Publications

* denotes corresponding author and † indicates equal contribution.

2025

  1. TKDE
    Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis
    Zezhi Shao, Fei Wang*, Yongjun Xu*, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Tao Sun, Guangyin Jin, Xin Cao, and 3 more authors
    IEEE Transactions on Knowledge and Data Engineering, Jan 2025
  2. Information Fusion
    MGSFformer: A Multi-Granularity Spatiotemporal Fusion Transformer for air quality prediction
    Chengqing Yu, Fei Wang*, Yilun Wang, Zezhi Shao, Tao Sun, Di Yao, and Yongjun Xu*
    Information Fusion, Jan 2025
  3. KDD
    Efficient large-scale traffic forecasting with transformers: A spatial data management perspective
    Yuchen Fang, Yuxuan Liang, Bo Hui, Zezhi Shao, Liwei Deng, Xu Liu, Xinke Jiang, and Kai Zheng
    In Proceedings of the 31th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Toronton, ON, Canada, Feb 2025
  4. Innovation
    Foundation models and intelligent decision-making: Progress, challenges, and perspectives
    Jincai Huang, Yongjun Xu, Qi Wang, Qi (Cheems) Wang, Xingxing Liang, Fei Wang, Zhao Zhang, Wei Wei, Boxuan Zhang, Libo Huang, and 61 more authors
    The Innovation, Jun 2025
  5. TKDE
    GinAR+: A Robust End-To-End Framework for Multivariate Time Series Forecasting with Missing Values
    Chengqing Yu, Fei Wang*, Zezhi Shao, Tangwen Qian, Zhao Zhang, Wei Wei, Zhulin An, Qi Wang, and Yongjun Xu
    IEEE Transactions on Knowledge and Data Engineering, May 2025
  6. Innovation
    Spatial-temporal large models: A super hub linking multiple scientific areas with artificial intelligence
    Zezhi Shao, Tangwen Qian, Tao Sun, Fei Wang*, and Yongjun Xu*
    The Innovation, May 2025
  7. PR
    Trajectory-User Linking via Multi-Scale Graph Attention Network
    Yujie Li, Tao Sun, Zezhi Shao, Yiqiang Zhen, Yongjun Xu, and Fei Wang*
    Pattern Recognition, Feb 2025
  8. KDD
    BLAST: Balanced Sampling Time Series Corpus for Universal Forecasting Models
    Zezhi Shao, Yujie Li, Fei Wang*, Chengqing Yu, Yisong Fu, Tangwen Qian, Bin Xu, Boyu Diao, Yongjun Xu, and Xueqi Cheng
    In Proceedings of the 31th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Toronton, ON, Canada, Aug 2025

2024

  1. TKDE
    Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey
    Guangyin Jin, Yuxuan Liang, Yuchen Fang, Zezhi Shao, Jincai Huang, Junbo Zhang, and Yu Zheng
    IEEE Transactions on Knowledge and Data Engineering, Nov 2024
  2. Innovation
    Artificial intelligence for geoscience: Progress, challenges, and perspectives
    Tianjie Zhao, Sheng Wang, Chaojun Ouyang, Min Chen, Chenying Liu, Jin Zhang, Long Yu, Fei Wang, Yong Xie, Jun Li, and 41 more authors
    The Innovation, Sep 2024
  3. KDD
    GinAR: An End-To-End Multivariate Time Series Forecasting Model Suitable for Variable Missing
    Chengqing Yu, Fei Wang*, Zezhi Shao, Tangwen Qian, Zhao Zhang, Wei Wei, and Yongjun Xu*
    In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, Aug 2024
  4. ICASSP
    Dynamic Frequency Domain Graph Convolutional Network for Traffic Forecasting
    Yujie Li, Zezhi Shao, Yongjun Xu, Qiang Qiu, Zhaogang Cao, and Fei Wang
    In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2024

2023

  1. CIKM
    DSformer: A Double Sampling Transformer for Multivariate Time Series Long-term Prediction
    Chengqing Yu, Fei Wang*, Zezhi Shao, Tao Sun, Lin Wu, and Yongjun Xu
    In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, United Kingdom, Oct 2023
  2. TKDE
    Heterogeneous Graph Neural Network With Multi-View Representation Learning
    Zezhi Shao, Yongjun Xu, Wei Wei, Fei Wang, Zhao Zhang, and Feida Zhu
    IEEE Transactions on Knowledge and Data Engineering, Nov 2023
  3. CIKM
    Clustering-property Matters: A Cluster-aware Network for Large Scale Multivariate Time Series Forecasting
    Yuan Wang, Zezhi Shao, Tao Sun, Chengqing Yu, Yongjun Xu, and Fei Wang*
    In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, United Kingdom, Oct 2023

2022

  1. CIKM
    Spatial-Temporal Identity: A Simple yet Effective Baseline for Multivariate Time Series Forecasting
    Zezhi Shao, Zhao Zhang, Fei Wang*, Wei Wei, and Yongjun Xu
    In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, Oct 2022
  2. KDD
    Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting
    Zezhi Shao, Zhao Zhang, Fei Wang*, and Yongjun Xu
    In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington DC, USA, Aug 2022
  3. VLDB
    Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
    Zezhi Shao, Zhao Zhang, Wei Wei*, Fei Wang*, Yongjun Xu, Xin Cao, and Christian S. Jensen
    Proc. VLDB Endow., Jul 2022

2021

  1. ICPR
    Trajectory-User Link with Attention Recurrent Networks
    Tao Sun, Yongjun Xu, Fei Wang, Lin Wu, Tangwen Qian, and Zezhi Shao
    In 2020 25th International Conference on Pattern Recognition (ICPR), May 2021