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Abstract
Road traffic forecasting is crucial in real-world intelligent trans-
portation scenarios like traffic dispatching and path planning in
city management and personal traveling. Spatio-temporal graph
neural networks (STGNNs) stand out as the mainstream solution in
this task. Nevertheless, the quadratic complexity of remarkable dy-
namic spatial modeling-based STGNNs has become the bottleneck
over large-scale traffic data. From the spatial data management
perspective, we present a novel Transformer framework called
PatchSTG to efficiently and dynamically model spatial dependen-
cies for large-scale traffic forecasting with interpretability and fi-
delity. Specifically, we design a novel irregular spatial patching
to reduce the number of points involved in the dynamic calcula-
tion of Transformer. The irregular spatial patching first utilizes the
leaf K-dimensional tree (KDTree) to recursively partition irregu-
larly distributed traffic points into leaf nodes with a small capacity,
and then merges leaf nodes belonging to the same subtree into
occupancy-equaled and non-overlapped patches through padding
and backtracking. Based on the patched data, depth and breadth
attention are used interchangeably in the encoder to dynamically
learn local and global spatial knowledge from points in a patch
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and points with the same index of patches. Experimental results
on four real world large-scale traffic datasets show that our Patch-
STG achieves train speed and memory utilization improvements
up to 10× and 4× with the state-of-the-art performance.
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1 Introduction
Road traffic data comprises multiple traffic time series collected
from points where road sensors are deployed. Thus traffic time
series are correlated in not only the temporal aspect but also spatial
domain. Forecasting future road traffic through past data plays an
essential role in many real world intelligent transportation applica-
tions. For instance, users on Map platforms can select the least time
path in advance according to the predicted traffic [7, 33, 40, 41].
Likewise, on city management platforms [6], users can control the
signal light to avoid congestion based on future traffic [10, 29, 53].

To accurately forecast future road traffic, countless algorithms
have been proposed in past decades, ranging from statistical mod-
els [2] to data-driven methods [27]. In the beginning, temporal
modeling methods like the recurrent neural network (RNN) and
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2 Related Works
2.1 Traffic Forecasting
Traffic forecasting has been a concern of research and industrial
communities in past decades. Originally, the statistical-based vector
autoregression (VAR) [2] and autoregressive integrated moving av-
erage (ARIMA) [28] are used to capture temporal dependencies. As
deep learning is splendid in many tasks, recurrent neural network-
based methods [46] and temporal convolution network-based meth-
ods [16, 23] are proposed to improve traffic forecasting perfor-
mance. To simultaneously extract spatio-temporal information,
DCRNN [34] and STGCN [61] constructed a fixed adjacency matrix
in graph neural networks [25, 62, 63] based on real-world distances
to capture static spatial information for traffic forecasting. Subse-
quent techniques such as GWNET [59], AGCRN [1], MTGNN [58],
METRO [4], STG-NCDE [3], and Localised AGCRN [9] have fur-
ther improved forecasting accuracy through the data-driven fixed
adjacency matrix. Nevertheless, most of them ignored the evolved
spatial correlations of traffic. For calculating dynamic point-to-
point spatial correlations, most approaches such as ASTGCN [17],
GMAN [65], ST-GRAT [49], DMSTGCN [21], GMSDR [38], and
etc. [24, 35, 39, 56, 64] applied the dot-product operation intro-
duced by the attention mechanism on hidden representations with
different periods. However, point-to-point dynamic models have
brought the efficiency bottleneck into large-scale traffic forecasting.
Despite efficient dynamic spatial modeling methods such as linear-
based Lastjomer [13], BigST [20] and low-rank-based HIEST [47],
SSTBAN [18] have been proposed to reduce the complexity, explicit
spatial correlations are failed to report in linear-based methods and
performance is restricted in low-rank-based methods compared
with perceptron-based STID [50] and SimST [42] due to spatial
reduction caused information loss. Therefore, we propose a novel
efficient dynamic spatial modeling method PatchSTG, which is
intepretable and fidelity.

2.2 Efficient Spatial Transformers
The quadratic complexity of dot-product attention has become the
bottleneck in applying Transformers to learn spatial knowledge,
thus efficient spatial Transformers have been researched in recent
years. For regular spatial data such as images and videos, the same
number of neighbored pixels can be simply merged into the same
size patches such as ViT [8] and SwinTransformer [44] to decrease
complexity by reducing points in the calculation. Different from
regular spatial data, GraphTrans-ViT [22] and PatchGT [15] can
only derive the overlapped and unbalanced patches through clus-
tering algorithms. Luckily, STRN [36], FPT [48] and OctFormer [54]
segmented images into patches with different sizes based on the se-
mantic and distribution, which gave us the inspiration to use spatial
data management algorithms for patching time-ordered irregular
spatial data into balanced and non-overlapped patches.

3 Preliminaries
Traffic Data. Traffic data is made up of multiple correlated time
series collected from points where road sensors are deployed. The
recorded time series of the specific traffic point 𝑛 can be formulated
as 𝑥𝑛 ∈ R𝐻 , which contains traffic volume within 𝐻 time slices.

Spatio-Temporal Embedding

Irregular Spatial Patching

Dual Attention Encoder

Projection Decoder

Neural 
Networks

Data
Management

Data
Processing

Historical
Input Traffic

Forecasted
Output Traffic

Figure 2: The workflow of our PatchSTG.

Therefore, traffic data that comprises time series on 𝑁 points can
be formed as a matrix𝑋 ∈ R𝐻×𝑁 , where 𝑥ℎ𝑛 denotes the traffic flow
of point 𝑛 at time ℎ.
Traffic Forecasting. In the traffic forecasting task, the common
setting involves predicting future traffic features through historical
values. Specifically, the goal of our paper is to forecast the future
traffic flow for the next 𝐹 time slices according to information from
the preceding 𝐻 time slices and the location of points.

𝑌 = 𝑓𝜃 (𝑋, 𝐿𝑎𝑡, 𝐿𝑛𝑔) (1)

where 𝑌 ∈ R𝐹×𝑁 is the predicted traffic in the future, which will be
used to compare with the ground truth 𝑌 ∈ R𝐹×𝑁 . 𝐿𝑎𝑡 ∈ R𝑁 and
𝐿𝑛𝑔 ∈ R𝑁 denote the real-world latitude and longitude of points.
Moreover, the function 𝑓𝜃 (·) indicates a data-driven forecasting
model parameterized by 𝜃 .

4 Methodology
In this section, we present our PatchSTG framework, an effective
and efficient solution designed for large-scale traffic forecasting.
Figure 2 illustrates the overview of PatchSTG, which comprises
four primary components: a spatio-temporal embedding module to
preprocess traffic data into high-dimensional embeddings, an irreg-
ular spatial patching to split the same number of traffic points into
patches, a dual attention encoder for extracting spatial information,
and a projection decoder for predicting future values. We offer a
detailed description of each component in the following.

4.1 Spatio-Temporal Embedding
Following previous works [30, 50], we adopt a fully-connected layer
for each input traffic time series to transform their numerical traffic
flow into high-dimensional embeddings. The detailed process of
input traffic data 𝑋 ∈ R𝐻×𝑁 can be formulated as follows:

𝐸 =𝑊(𝐼 )𝑋 + 𝑏 (𝐼 ) (2)
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(a) KDTree (b) Leaf KDTree

LKDT new indices

Padded new indices

Patched new indices

(c) New indices

Figure 3: (a)-(b): left part draws the spatial partition using the original and leaf KDTree, and the right part is the corresponding
tree. (c): KDT and LKDT are abbreviations of KDTree and leaf KDTree.

where𝑊(𝐼 ) ∈ R𝑑𝑒×𝐻 and 𝑏 (𝐼 ) ∈ R𝑑𝑒 are learnable parameters
of fully-connected layer. 𝐸 ∈ R𝑁×𝑑𝑒 is the projected embedding
that contains the temporal evolution of traffic. Moreover, we take
temporal daily patterns, temporal weekly patterns, and spatial
heterogeneous patterns into consideration to improve the distin-
guishability of points followed by previous methods [39, 50]. For
temporal aspect, day-of-week and timeslice-of-day patterns can be
stored in the data-driven dictionary𝑊 ∈ R𝑁𝑤×𝑑𝑤 , 𝐷 ∈ R𝑁𝑑×𝑑𝑑 ,
where 𝑁𝑤 and 𝑁𝑑 indicate the number of days in a week and
the number of timeslices in a day. Therefore, we can use the last
timeslice of all points as the index to extract corresponding day-of-
week embedding 𝐸 (𝑤 ) ∈ R𝑁×𝑑𝑤 and timeslice-of-day embedding
𝐸 (𝑑 ) ∈ R𝑁×𝑑𝑑 from dictionaries. Similar to the temporal aspect,
we utilize the learnable embedding 𝐸 (𝑠 ) ∈ R𝑁×𝑑𝑠 as identities to
distinguish points in the dataset. Finally, we concatenate the above
embeddings to derive the spatio-temporal embedding:

�̃� = 𝐸 | |𝐸 (𝑤 ) | |𝐸 (𝑑 ) | |𝐸 (𝑠 ) (3)

where �̃� ∈ R𝑁×𝑑 and 𝑑 = 𝑑𝑒 + 𝑑𝑤 + 𝑑𝑑 + 𝑑𝑠 .

4.2 Irregular Spatial Patching
Motivation. Spatial propagation is indispensable in improving traf-
fic forecasting performance evaluated by some methods [39, 57] in
addition to spatial distinguishability. This is because vehicles mov-
ing on the road will bring real-time traffic changes in the source and
destination areas. However, the quadratic complexity of remarkable
dynamic spatial modeling methods is unacceptable under current
computation resources. Fortunately, we find that spatial informa-
tion in vision Transformers [44, 54] can be efficiently propagated
on the patched input by reducing the number of points involved
in attention. The difference between traffic and vision data is that
pixels are regularly located in images but traffic points are irreg-
ularly distributed on roads, i.e., the same number of pixels can be
segmented into patches of the same size, but traffic points can not.
Therefore, the main goal of our PatchSTG is to design a balanced
and non-overlapped patching algorithm to reduce computation
requirements of performing attention on irregular spatial data.
Leaf KDTree. As irregular spatial data management is essential for
database, geoscience, etc., numerous spatial partitioning algorithms
such as KDTree [52] and RTree [19] have been proposed. Consider-
ing the balance, non-overlapping, and efficiency requirements of
partition, we take the simple yet effective KDTree into account to
find a solution for evenly dividing irregular traffic data. As shown
in Figure 3a, KDTree is a binary spatial tree that uses each internal

node as a partitioning hyperplane to split points contained in the
node between its two children excluding the hyperplane and is
built by recursing on each child node after partitioning, until leaf
nodes are reached. Besides, the splitting hyperplane is determined
by alternately chosen coordinate axes and the median point of the
selected axis. In this paper, locations of latitude and longitude of
traffic data are considered as axes to construct the tree. Unfortu-
nately, as illustrated in Figure 3a, we find that hyperplane points
in internal nodes of the conventional KDTree are not divided into
leaf nodes and may result in irrelevant points being adjacent in
the searching order. Therefore, we design a novel leaf KDTree as
drawn in Figure 3b to enforce all points stored in leaf nodes, which
utilizes the median value as the partitioning hyperplane for internal
nodes with an even number of points, and the value between the
median point and its left point as the partitioning hyperplane for
internal nodes with an odd number of points. Moreover, from the
illustration of our leaf KDTree in Figure 3b, we can observe that
leaf nodes belonging to the same subtree maintain stronger spatial
correlations based on their real-world closer distance, which pro-
vides the explainable backtracking for subsequent patching. After
constructing leaf KDTree, we conduct the breath first searching on
the tree to derive new indices of traffic points according to their
searching order, which ensures that leaf nodes belonging to the
same subtree are adjacent in the latest index. The entire process
based on the latitude 𝐿𝑎𝑡 ∈ R𝑁 , longitude 𝐿𝑛𝑔 ∈ R𝑁 , and the
capacity 𝐶 of leaf nodes (leaf nodes in KDTree contain at most 𝐶
points for a predetermined constant and 𝐶 = 2 in Figure 3) can be
formulated as follows:

˜𝑖𝑑𝑥 = 𝐵𝐹𝑆 (𝐿𝐾𝐷𝑇 (𝐿𝑎𝑡, 𝐿𝑛𝑔,𝐶)) (4)

where ˜𝑖𝑑𝑥 ∈ R𝑁 . 𝐿𝐾𝐷𝑇 (·) and 𝐵𝐹𝑆 (·) denote the leaf KDTree
construction and breath first search operation.
Padding. Despite leaf KDTree can provide an equilibrium partition,
the number of traffic points 𝑁 is not necessarily divisible by the
capacity 𝐶 , which leads to unfull leaf nodes as shown in Figure 3c.
The inconsistent number destroys the application of patch-based
efficient methods. Padding zeros or irrelevant points can mitigate
the non-divisible issue yet decrease prediction performance. To
make leaf nodes have equaled occupancy and non-self-repeating,
we pad the points that are most similar to the unfull leaf nodes
from other leaf nodes to reach the maximum capacity, which can
confirm the non-overlap patches by the similar time series:

𝑖𝑑𝑥, ¯𝑖𝑑𝑥 = 𝑄𝑢𝑒𝑟𝑦 (𝐿𝐾𝐷𝑇 (𝐿𝑎𝑡, 𝐿𝑛𝑔,𝐶),𝐶𝑜𝑠𝑆𝑖𝑚(𝑋,𝑋𝑇 )) (5)
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where 𝑄𝑢𝑒𝑟𝑦 (·) denotes querying most similar points of each un-
full leaf node through the Cosine similarity𝐶𝑜𝑠𝑆𝑖𝑚(·). 𝑖𝑑𝑥 and ¯𝑖𝑑𝑥
indicate locations should be padded in the new index and the corre-
sponding original indices of queried points. Therefore, the padding
process can be formulated as follows:

𝑋 = 𝑃𝑎𝑑 (𝑖𝑑𝑥, ¯𝑖𝑑𝑥, �̃� ˜𝑖𝑑𝑥 ) (6)

where 𝑃𝑎𝑑 (·) denotes padding queried neighbors into correspond-
ing locations of new indices. Therefore, padded embedding 𝑋 ∈
R𝑀×𝑑 have𝑀 points and𝑀 = 𝐶 × 2⌊𝑙𝑜𝑔 (𝑁 ) ⌋−𝑙𝑜𝑔 (𝐶 ) ≥ 𝑁 .
Patching. Despite padded leaf nodes have the same number of
points, directly using leaf nodes with a large capacity as patches
will result in an unbalanced padding issue, i.e., unfull leaf nodes
may be padded by points similar to the same point. Recognizing
that leaf nodes under the same subtree are strongly correlated and
adjacent in new indices, we can first partition points into leaf nodes
with a small capacity and then backtrack the tree from leaf nodes to
root nodes of subtrees until meet the requirements that the number
of the subtree is equal to the number of the pre-defined patch,
which mitigates the unbalanced padding issue because unfull leaf
nodes are mostly padded by points similar with different points.
Concretely, let 𝑃 = 𝐶 × 𝑁𝑝 indicate the number of points in a
patch and 𝑅 denotes the number of patches, where 𝑁𝑝 is a hyper-
parameter that determines how many leaf nodes in a subtree and
𝑀 = 𝑅 × 𝑃 . Notably, 𝑁𝑝 can only be a power of 2 because only leaf
nodes that belong to the same subtree have strong spatial locality
and our leaf KDTree is a binary tree.

After our balanced and non-overlapped spatial patching, the
padded embedding 𝑋 is transformed into a new representation
X ∈ R𝑅×𝑃×𝑑 as the input of the following neural networks.

4.3 Dual Attention Encoder
In this section, we present the dual attention encoder to dynamically
capture spatial dependencies. For the patched input X ∈ R𝑅×𝑃×𝑑 ,
𝑅 points in the first dimension can be seen as the root nodes of
subtrees and 𝑃 points in the second dimension can be seen points in
the subtree. Therefore, PatchSTG first uses the depth attention on
each patch to dynamically extract local spatial information because
points in a subtree have stronger correlations. Moreover, as global
dependencies are equally essential to the local information in traffic
prediction [13], breadth attention is then adopted on the patch level
to learn lossless global knowledge because each point in a root
node of the subtree can receive information from points with the
same index in other root nodes and these points are mixed with
local information after previous depth attention. The dual attention
can be interchangeably stacked 𝐿 layers in the encoder, thus we
describe the process of 𝑙-th layer in the following for simplicity.
Depth Attention. Depth attention is the multi-head scaled dot-
product attention, which is used to capture local spatial information
in patches. As shown in Figure 4, the query, key, and value are first
derived by using learnable linear transformations on the input,
which can be formulated as follows:

𝑄
(𝑙 )
(𝑃 )𝑖 =𝑊

(𝑙 )
(𝑄 )𝑖X

(𝑙−1)

𝐾
(𝑙 )
(𝑃 )𝑖 =𝑊

(𝑙 )
(𝐾 )𝑖X

(𝑙−1)

𝑉
(𝑙 )
(𝑃 )𝑖 =𝑊

(𝑙 )
(𝑉 )𝑖X

(𝑙−1)

(7)

… …

Scaled Dot-Product AttentionScaled Dot-Product AttentionScaled Dot-Product Attention

LinearLinearLinear LinearLinearLinear LinearLinearLinear

Concat

… …

… …

Scaled Dot-Product AttentionScaled Dot-Product AttentionScaled Dot-Product Attention

LinearLinearLinear LinearLinearLinear LinearLinearLinear

Concat

… …

… …… …… …

Depth Attention Breadth Attention

Figure 4: Structure of depth and breadth attention.

where 1 ≤ 𝑖 ≤ 𝑜 in our multi-head setting. 𝑄 (𝑙 )
(𝑃 )𝑖 , 𝐾

(𝑙 )
(𝑃 )𝑖 ,𝑉

(𝑙 )
(𝑃 )𝑖 ∈

R𝑅×𝑃×
𝑑
𝑜 indicate the query, key, and value of each head in 𝑙-th

layer, and𝑊 (𝑙 )
(𝑄 )𝑖 ,𝑊

(𝑙 )
(𝐾 )𝑖 ,𝑊

(𝑙 )
(𝑉 )𝑖 ∈ R𝑑×

𝑑
𝑜 are learnable parameters.

Notably X (0) = X for the encoder. Then we utilize the query and
key to dynamically compute point correlations (shape is R𝑅×𝑃×𝑃 )
of each patch, and leverage it to attend spatial information:

𝐴
(𝑙 )
(𝑃 )𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (

𝑄
(𝑙 )
(𝑃 )𝑖𝐾

(𝑙 )𝑇
(𝑃 )𝑖√︁

𝑑/𝑜
)𝑉 (𝑙 )

(𝑃 )𝑖 (8)

where 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) normalizes correlations. Finally, multi-head re-
sults of the 𝑙-th layer are concatenated:

X̃ (𝑙 ) = (𝐴(𝑙 )
(𝑃 )1

| |...| |𝐴(𝑙 )
(𝑃 )𝑜 )𝑊

(𝑙 )
(𝑂 ) (9)

where𝑊 (𝑙 )
(𝑂 ) ∈ R𝑑×𝑑 denotes the learnable parameter.

Breadth Attention. Breadth attention is also the multi-head scaled
dot-product attention, which is used to learn global spatial knowl-
edge at the patch level. Similarity, the query, key, and value 𝑄 (𝑙 )

(𝑅)𝑖 ,

𝐾
(𝑙 )
(𝑅)𝑖 , 𝑉

(𝑙 )
(𝑅)𝑖 ∈ R𝑃×𝑅×

𝑑
𝑜 are first derived by using learnable linear

transformations on the output of depth attention. Then query and
key are used to dynamically compute patch correlations (shape is
R𝑃×𝑅×𝑅 ) of each index in patches. Finally, the output of the 𝑙-th
layerX (𝑙 ) ∈ R𝑅×𝑃×𝑑 is derived by using the calculated correlations
to attend global information.

4.4 Projection Decoder
In this section, we aim to predict the future traffic through the
spatial information interacted output X (𝐿) ∈ R𝑅×𝑃×𝑑 of the dual
attention encoder. We first unpatch the output to 𝑋 (𝐿) ∈ R𝑀×𝑑

through performing depth first search operation on each root node,
and unpad leaf nodes to consist with the input shape and index:

�̃� ˜𝑖𝑑𝑥 = 𝑈𝑛𝑃𝑎𝑑 (𝑖𝑑𝑥, 𝑋 (𝐿) ) (10)

where 𝑈𝑛𝑃𝑎𝑑 (·) denotes removing points on the unpadded loca-
tions and �̃� ∈ R𝑁×𝑑 is the representation with original index.
Finally, a fully connected layer is adopted to project the historical
representation into the future:

𝑌 =𝑊(𝐷 )�̃� + 𝑏 (𝐷 ) (11)

where𝑊(𝐷 ) ∈ R𝐹×𝑑 , 𝑏 (𝐷 ) ∈ R𝐹 are learnable parameters and
𝑌 ∈ R𝐹×𝑁 indicates predicted traffic. During the training stage, we

311



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yuchen Fang et al.

use 𝑌 and 𝑌 to compute L1 loss as the objective function to guide
the learning of PatchSTG.

4.5 Complexity Analysis
The leaf KDTree takes 𝑂 (𝑁𝑙𝑜𝑔(𝑁 )) complexity to construct the
balanced binary tree based on the median hyperplane [5], which
can be quickly done in the pre-processing stage. In the dual at-
tention encoder, the cost of depth and breadth attention is respec-
tively 𝑂 (𝑅𝑃2𝑑) and 𝑂 (𝑃𝑅2𝑑). Therefore, the dominant complexity
of PatchSTG is𝑂 (𝑚𝑎𝑥 (𝑃, 𝑅)𝑀𝑑), which requires less time than qua-
dratic dynamic spatial modeling methods because 𝑃 ≪ 𝑁 , 𝑅 ≪ 𝑁 ,
and𝑀 ≈ 𝑁 in PatchSTG.

Table 2: Dataset statistics.

Datasets #Points #Samples #TimeSlices Timespan

SD 716 25M 35040 01/01/2019-12/31/2019
GBA 2352 82M 35040 01/01/2019-12/31/2019
GLA 3834 134M 35040 01/01/2019-12/31/2019
CA 8600 301M 35040 01/01/2019-12/31/2019

5 Experiments
The goal of this section is to address the following five pivotal
research questions by conducting comprehensive experiments on
four large-scale traffic datasets.
• RQ1: How does PatchSTG perform when compared to current
approaches in large-scale traffic forecasting?

• RQ2:What contributions do the main components of PatchSTG?
• RQ3: How efficient is PatchSTG in large-scale datasets?
• RQ4: Does PatchSTG output reasonable correlations?
• RQ5: How do the essential hyper-parameters impact PatchSTG?

5.1 Experimental Setup
5.1.1 Datasets. We conduct experiments on four large-scale datasets
SD, GBA, GLA, and CA as introduced in LargeST [43]. Following
previous settings, we not only chronologically split each dataset
into train, validation, and test sets with a ratio of 6:2:2 but also
utilize continuous 24 time slices as samples to perform traffic fore-
casting with the historical 12 time slices as the input and the future
12 time slices as the output. Detailed statistics of these datasets are
shown in Table 2.

5.1.2 Baselines. We compare 10 advanced baselines in this paper
with our PatchSTG . (i) The non-spatial modeling-based STID [50],
which uses identity spatio-temporal embeddings in fully-connected
layers to forecast traffic. (ii) In the category of static spatial-based
methods, we select GWNET [59], AGCRN [1], STGODE [14], and
RPMixer [60]. They combine various static GNNs with tempo-
ral networks for traffic forecasting. (iii) Baselines in the dynamic
spatial-based category include, DSTAGNN [31], D2STGNN [51],
DGCRN [32], low-rank STWave [11], and linear BigST [20]. They
dynamically reveal spatial correlations at different time periods for
traffic forecasting.

5.1.3 Evaluation Metrics. We utilize diverse evaluation criteria
from performance and efficiency aspects for a comprehensive com-
parison. For the performance aspect: we utilize three commonly

adopted numerical metrics to assess the performance of predicted
traffic time series, i.e., mean absolute error (MAE), rootmean squared
error (RMSE), and mean absolute percentage error (MAPE). For the
efficiency aspect: the measurement of the model’s efficiency is
based on the wall-clock time, and the memory needs of models are
revealed by the batch size in the training phase.

5.1.4 Implementation Details. During training, PatchSTG is op-
timized by the AdamW optimizer with a learning rate of 0.002
and weight decay of 0.0001, and the training epoch is set to 50
for all datasets. Moreover, the learning rate is halved at 2, 35, and
40 epochs. To better reproduce our model, we summarize all the
default hyper-parameters as follows. The dimension of input pro-
jection in SD, GBA, GLA, and CA datasets is set to 128, 128, 64,
and 64. The dimension of day-of-week embedding, timeslice-of-day
embedding, and spatial embedding is all set to 32. The number of
segmented patches of CA, GLA, GBA, and SD is set to 512, 64, 16,
and 16. The number of points in a leaf node is set as 3, 2, 2, and 2 for
CA, GLA, GBA, and SD. The number of attention layers is set to 5.
Besides, all the experiments are implemented in PyTorch with the
NVIDIA RTX A6000 48GB GPU. The source code of PatchSTG is
available at: https://github.com/LMissher/PatchSTG.

5.2 Performance Comparisons (RQ1)
Table 3 showcases the MAE, RMSE, and MAPE of traffic forecasting
across all methods on four large-scale datasets except for failure
to run with the smallest batch size of 1. The performance on the
horizon 3, horizon 6, horizon 12, and the average of the whole
12 horizons are reported. To ensure a fair comparison, we follow
official configurations of baselines, with the only adjustment of
fixes input length to 12. Therefore baselines in our paper may show
slight variations compared to the original results.

Advantages of Distinguishability. Among the baselines con-
cerned, identity embedding-based non-spatial STID, shows a signif-
icant lead over spatial modeling methods on larger datasets such as
the CA dataset. This phenomenon underscores the advantages of
learning heterogeneous representations of different points to avoid
over-smoothing in spatial message passing.

Advantages of Dynamic Spatial Modeling. As shown in Ta-
ble 3, D2STGNN exhibits remarkable superiority, especially on the
SD dataset when compared to non-spatial and static spatial-based
methods. This appearance is owing to the dynamic spatial modeling.
Despite point-to-point D2STGNN achieving great performance in
small-scale datasets, it is still limited by the quadratic complexity
in large-scale GLA and CA datasets.

Advantages of Explicit Spatial Aggregation. In large-scale
datasets, in contrast to linear-based efficient dynamic spatial model-
ing method BigST, low rank-based STWave demonstrates clear ad-
vantages on all datasets under spatial reduction caused information
loss, attributed to the implicit spatial correlations in linear-based
methods are failed to correctly normalize.

Consistent Performance Superiority. Drawing on the afore-
mentioned components and our irregular spatial patching, we intro-
duce PatchSTG, an efficient Transformer framework that achieves
state-of-the-art performance on all datasets as evidenced in Table 3.
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Table 3: Large-scale traffic forecasting performance comparison of our PatchSTG and baselines. Redfont indicates the best
performance and bluefont denotes the second best performance.

Datasets Methods Horizon 3 Horizon 6 Horizon 12 Average
MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

SD

STID 15.15 25.29 9.82 17.95 30.39 11.93 21.82 38.63 15.09 17.86 31.00 11.94
GWNET 15.24 25.13 9.86 17.74 29.51 11.70 21.56 36.82 15.13 17.74 29.62 11.88
AGCRN 15.71 27.85 11.48 18.06 31.51 13.06 21.86 39.44 16.52 18.09 32.01 13.28
STGODE 16.75 28.04 11.00 19.71 33.56 13.16 23.67 42.12 16.58 19.55 33.57 13.22
RPMixer 18.54 30.33 11.81 24.55 40.04 16.51 35.90 58.31 27.67 25.25 42.56 17.64
DSTAGNN 18.13 28.96 11.38 21.71 34.44 13.93 27.51 43.95 19.34 21.82 34.68 14.40
D2STGNN 14.92 24.95 9.56 17.52 29.24 11.36 22.62 37.14 14.86 17.85 29.51 11.54
DGCRN 15.34 25.35 10.01 18.05 30.06 11.90 22.06 37.51 15.27 18.02 30.09 12.07
STWave 15.80 25.89 10.34 18.18 30.03 11.96 21.98 36.99 15.30 18.22 30.12 12.20
BigST 16.42 26.99 10.86 18.88 31.60 13.24 23.00 38.59 15.92 18.80 31.73 12.91

PatchSTG 14.53 24.34 9.22 16.86 28.63 11.11 20.66 36.27 14.72 16.90 29.27 11.23

GBA

STID 17.36 29.39 13.28 20.45 34.51 16.03 24.38 41.33 19.90 20.22 34.61 15.91
GWNET 17.85 29.12 13.92 21.11 33.69 17.79 25.58 40.19 23.48 20.91 33.41 17.66
AGCRN 18.31 30.24 14.27 21.27 34.72 16.89 24.85 40.18 20.80 21.01 34.25 16.90
STGODE 18.84 30.51 15.43 22.04 35.61 18.42 26.22 42.90 22.83 21.79 35.37 18.26
RPMixer 20.31 33.34 15.64 26.95 44.02 22.75 39.66 66.44 37.35 27.77 47.72 23.87
DSTAGNN 19.73 31.39 15.42 24.21 37.70 20.99 30.12 46.40 28.16 23.82 37.29 20.16
D2STGNN 17.54 28.94 12.12 20.92 33.92 14.89 25.48 40.99 19.83 20.71 33.65 15.04
DGCRN 18.02 29.49 14.13 21.08 34.03 16.94 25.25 40.63 21.15 20.91 33.83 16.88
STWave 17.95 29.42 13.01 20.99 34.01 15.62 24.96 40.31 20.08 20.81 33.77 15.76
BigST 18.70 30.27 15.55 22.21 35.33 18.54 26.98 42.73 23.68 21.95 35.54 18.50

PatchSTG 16.81 28.71 12.25 19.68 33.09 14.51 23.49 39.23 18.93 19.50 33.16 14.64

GLA

STID 16.54 27.73 10.00 19.98 34.23 12.38 24.29 42.50 16.02 19.76 34.56 12.41
GWNET 17.28 27.68 10.18 21.31 33.70 13.02 26.99 42.51 17.64 21.20 33.58 13.18
AGCRN 17.27 29.70 10.78 20.38 34.82 12.70 24.59 42.59 16.03 20.25 34.84 12.87
STGODE 18.10 30.02 11.18 21.71 36.46 13.64 26.45 45.09 17.60 21.49 36.14 13.72
RPMixer 19.94 32.54 11.53 27.10 44.87 16.58 40.13 69.11 27.93 27.87 48.96 17.66
DSTAGNN 19.49 31.08 11.50 24.27 38.43 15.24 30.92 48.52 20.45 24.13 38.15 15.07
STWave 17.48 28.05 10.06 21.08 33.58 12.56 25.82 41.28 16.51 20.96 33.48 12.70
BigST 18.38 29.40 11.68 22.22 35.53 14.48 27.98 44.74 19.65 22.08 36.00 14.57

PatchSTG 15.84 26.34 9.27 19.06 31.85 11.30 23.32 39.64 14.60 18.96 32.33 11.44

CA

STID 15.51 26.23 11.26 18.53 31.56 13.82 22.63 39.37 17.59 18.41 32.00 13.82
GWNET 17.14 27.81 12.62 21.68 34.16 17.14 28.58 44.13 24.24 21.72 34.20 17.40
STGODE 17.57 29.91 13.91 20.98 36.62 16.88 25.46 45.99 21.00 20.77 36.60 16.80
RPMixer 18.18 30.49 12.86 24.33 41.38 18.34 35.74 62.12 30.38 25.07 44.75 19.47
STWave 16.77 26.98 12.20 18.97 30.69 14.40 25.36 38.77 19.01 19.69 31.58 14.58
BigST 17.15 27.92 13.03 20.44 33.16 15.87 25.49 41.09 20.97 20.32 33.45 15.91

PatchSTG 14.69 24.82 10.51 17.41 29.43 12.83 21.20 36.13 16.00 17.35 29.79 12.79

5.3 Ablation Study (RQ2)
In this section, ablation experiments are conducted on four datasets
using four variants of PatchSTG to address RQ2. These four variants
are listed below:

• "w/o FGGC": PatchSTG fuse all points in the same patch into a
single patch point during the breadth attention.

• "w/o Depth": PatchSTG removes the depth attention and only
global spatial correlations are modeled.

• "w/o Breadth": PatchSTG removes the breadth attention and only
local spatial correlations are modeled.

• "w/ PadDis": PatchSTG pads points with closest distance into
unfull patches.

• "w/o PadSim": This variant only pads zero constants but not other
points into unfull leaf nodes.

• "w/ METIS": This variant uses the balanced graph partition algo-
rithm METIS to replace our Leaf KDTree.

• "w/ KMeans": This variant utilizes the unbalanced clustering
algorithm KMeans to substitute our Leaf KDTree.

• "w/o LKDT": PatchSTG no longer equips the leaf KDTree, i.e.,
dual attention is conducted on the original input.

According to the results illustrated in Table 4, the following obser-
vations can be found.

Benefits Brought by KDTree. Experimental results of "w/o
LKDT" on all datasets show a huge drop in prediction performance,
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Table 4: Ablation study of PatchSTG on average results of large-scale traffic datasets. Bold: best performance.

Dataset SD GBA GLA CA
Metric MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)
w/o FGGC 17.37 29.44 11.45 19.72 33.28 15.51 19.49 32.95 11.69 17.63 30.04 13.05
w/o Depth 17.18 29.91 11.28 19.63 33.33 15.11 19.38 33.05 11.73 17.68 30.32 13.09
w/o Breadth 17.70 30.55 11.46 19.90 33.44 15.28 19.65 33.66 12.18 18.04 30.74 13.17
w/ PadDis 17.02 29.42 11.34 19.60 33.32 15.03 19.17 32.80 11.63 17.50 30.14 13.00
w/o PadSim 17.00 29.43 11.25 19.57 33.34 15.32 19.57 33.18 11.80 17.87 30.52 13.11
w/ METIS 18.00 30.69 11.72 19.91 33.38 15.16 19.63 33.57 11.86 18.02 30.53 13.02
w/ KMeans 18.07 30.76 11.87 20.16 33.93 15.87 19.85 34.07 11.90 18.26 31.08 13.05
w/o LKDT 17.58 29.38 11.45 20.14 34.18 15.91 19.88 34.47 12.31 18.27 30.97 13.00
PatchSTG 16.90 29.27 11.23 19.50 33.16 14.64 18.96 32.33 11.44 17.35 29.79 12.79

Table 5: Efficiency comparisons on large-scale traffic datasets. BS: batch size. Train: training time (in seconds) per epoch. Infer:
inference time (in seconds). Total: total training time (in hours). Note that𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑟𝑎𝑖𝑛×𝐸𝑝𝑜𝑐ℎ𝑒𝑠 and - indicates out of memory.

Methods SD GBA GLA CA
BS Train Infer Total BS Train Infer Total BS Train Infer Total BS Train Infer Total

DSTAGNN 64 240 23 7 27 1959 171 53 10 5241 467 120 - - - -
D2STGNN 45 563 69 14 4 5885 796 148 - - - - - - - -
DGCRN 64 430 76 14 12 4461 605 138 - - - - - - - -
STWave 64 259 33 7 36 926 120 26 22 1483 179 41 8 3641 437 101
PatchSTG 64 64 6 1 64 262 30 4 64 295 27 4 32 981 93 14

Improvements 0× 3.8× 3.8× 7× 1.8× 1.8× 4× 6.5× 2.9× 5× 6.6× 10× 4× 3.7× 4.7× 7.2×

recommending that the most important in PatchSTG is not dynam-
ically modeling spatial dependencies on irrelevant points in the
patch but passing spatial messages on adjacent points in the patch.
Moreover, the performance of STID and "w/o LKDT" on the GLA
dataset further verifies that our leaf KDTree is the key component
to model local spatial information. Besides, we test some methods
that can also segment the traffic data into multiple patches. The con-
ventional graph cluster methods such as KMeans not only achieve
poor performance as "w/ KMeans" but also fail to derive balanced
patching (the maximum and minimum patch size of KMeans on the
SD dataset is 96 and 6). Though the graph partition method METIS
can approximately segment traffic data into balanced patches, it
cannot derive balance padded non-overlap patches because the
recursive merge operation in our leaf KDTree is not supported, and
thus performs badly as "w/ METIS".

Effectiveness of Non-Overlap Padding. The experiments of
"w/ PadDis" and "w/o PadSim" reflect that, in all datasets, replacing
similar points with zeros or neighbored points to pad unfull leaf
nodes results in a drop in performance. This finding underscores
the effectiveness of our non-overlap padding from the temporal
view and backtracking merging for balanced padding.

Effectiveness of Dual Attention.As observed by the decreased
performance in "w/o Depth," depth attention is essential in Patch-
STG to capture local spatial dependencies. Similar to the local in-
formation, global spatial interactions are also indispensable in spa-
tial modeling as the performance drop of "w/o Breadth". Besides,
compared with the "w/o FGGC" performance, our non-fused fine-
grained global modeling achieves better results because it preserves
diverse global information and thus our PatchSTG is fidelity.

5.4 Efficiency Comparisons (RQ3)
To evaluate the efficiency of our PatchSTG, we present the train-
ing speed, inference speed, and batch size comparisons among
our PatchSTG and previous dynamic spatial modeling methods
with explicit spatial correlations, including DSTAGNN, D2STGNN,
DGCRN, and STWave. As depicted in Table 5, PatchSTG attains
the fastest speed and boasts the most efficient GPU memory uti-
lization across all datasets, especially achieving up to 10× and 4×
improvements in speed and memory on large-scale GLA and CA
datasets. While low-rank-based STWave also excels other meth-
ods in speed on large-scale datasets, the worse performance of
STWave on small datasets compared to quadratic complexity-based
DSTAGNN suggests that low-rank-based methods are less general
than our PatchSTG under different settings.

5.5 Visualization (RQ4)
Interpretability. To verify the interpretability of our PatchSTG, we
visualize the evenly segmented GLA dataset using our leaf KDTree
in Figure 5. We can observe that the real-world adjacent points
are obviously divided into the same leaf node to maintain spatial
locality, which can give explainable spatial partition compared with
low-rank-based dynamic spatial modeling methods. Moreover, our
PatchSTG can explicitly show the learned local and global spatial
correlations corresponding to their real-world locations on the
segmented map, which is interpretable compared with linear-based
dynamic spatial modeling methods.
Fidelity. To show our framework of learning global spatial knowl-
edge without information loss, we conduct a case study on the
GLA dataset, i.e., we visualize the learned patch correlations of
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Figure 5: Leaf KDTree on the GLA dataset.

(a) Correlations on 23𝑡ℎ (b) Correlations on 56𝑡ℎ

Figure 6: Learned patch-level correlations.

points with indices 23 and 56 in the patch. As shown in Figure 6,
the global correlations learned by the breadth attention are diverse
for different indices in the patch, which follows the heterogeneity
of traffic points. Therefore, our PatchSTG is fidelity compared with
low-rank-based methods because they can only reflect same patch
correlations for all points in the patch.

5.6 Hyper-parameter Study (RQ5)
Figure 7 draws the impact of hyper-parameters on the representa-
tive GBA and CA datasets. We search the number of attention layers
and the number of input fully-connected dimensions from a search
space of [1, 3, 5, 7] and [32, 64, 128, 256]. First, the performance of
PatchSTG improves as the layers of the encoder increase and tends
to be best when there are 5 layers. Second, when the number of
input dimensions is 64 and 128 on GBA and CA datasets, Patch-
STG achieves the best performance. We can observe that the small
model is enough to learn spatio-temporal knowledge in large-scale
datasets due to rich patterns in big data.

Moreover, we search the number of patches from a search space
of [8, 16, 32, 64, 128, 256, 512] as shown in Figure 8. PatchSTG with
16, 16, 64, and 512 patches can achieve the best performance on SD,
GBA, GLA, and CA datasets, which points out that the number of
patches is positively correlated with the size of the dataset.

6 Conclusions
In this paper, we introduce a novel efficient Transformer framework
PatchSTG from the spatial data management perspective for large-
scale traffic forecasting. PatchSTG first utilizes the leaf KDTree to
recursively partition the equilibrium number of irregular traffic
points into leaf nodes with interpretability. Then PatchSTG patches
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Figure 7: Hyper-parameter study.
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Figure 8: The influence of changing the number of patches.

leaf nodes with close distance together through backtracking after
padding. Finally, PatchSTG stacks the depth and breadth attention in
the encoder interchangeably to efficiently and dynamically capture
spatial information from the patched data with fidelity. Experimen-
tal results on four large-scale benchmark datasets demonstrate the
superior performance of PatchSTG against 10 baselines. We will
extend PatchSTG to other spatio-temporal tasks in the future, such
as national air quality prediction.
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