arXiv:2511.12945v1 [cs.LG] 17 Nov 2025

APT: Affine Prototype-Timestamp For Time Series Forecasting
Under Distribution Shift

Yujie Li,'* Zezhi Shao,! Chengqing Yu,'? Yisong Fu,'?> Tao Sun,' Yongjun Xu,"? Fei Wang'?*

I'State Key Laboratory of Al Safety, Institute of Computing Technology,Chinese Academy of Sciences
2University of Chinese Academy of Sciences
{liyujie23s, shaozezhi, yuchengqing22b, fuyisong24s, suntao, xyj, wangfei} @ict.ac.cn

Abstract

Time series forecasting under distribution shift remains chal-
lenging, as existing deep learning models often rely on lo-
cal statistical normalization (e.g., mean and variance) that
fails to capture global distribution shift. Methods like RevIN
and its variants attempt to decouple distribution and pat-
tern but still struggle with missing values, noisy observa-
tions, and invalid channel-wise affine transformation. To
address these limitations, we propose Affine Prototype-
Timestamp (APT), a lightweight and flexible plug-in mod-
ule that injects global distribution features into the nor-
malization—forecasting pipeline. By leveraging timestamp-
conditioned prototype learning, APT dynamically generates
affine parameters that modulate both input and output se-
ries, enabling the backbone to learn from self-supervised,
distribution-aware clustered instances. APT is compati-
ble with arbitrary forecasting backbones and normalization
strategies while introducing minimal computational over-
head. Extensive experiments across six benchmark datasets
and multiple backbone-normalization combinations demon-
strate that APT significantly improves forecasting perfor-
mance under distribution shift.

Code — https://github.com/blisky-1i/APT

1 Introduction

Time series reflect the artificial or natural regularities of
complex dynamic systems across transportation (Li et al.
2024; Shao et al. 2022), health (Ferté et al. 2024) and
weather (Yu et al. 2025). However, external factors com-
monly induce distributional shift and non-stationarity, mak-
ing forecasting models struggle to effectively capture pat-
terns under changing statistical properties.

Reversible Instance Normalization (RevIN) (Kim et al.
2021) introduces a two-stage paradigm for mitigating tem-
poral distribution shift: instance normalization that re-
moves instance-specific distributions and affine transforma-
tion that attempts to restore channel-wise distributional fea-
tures. This decoupling of time-varying distributions from
learnable temporal patterns has laid the foundation for
many modern forecasting models, and subsequent advance-

ments—including DishTS (Fan et al. 2023), SAN (Liu et al.

*Corresponding authors.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Predict Predict

Segment C
(Distribution Shift)

Segment A
(with Missing Values)

Segment B
(Stable Distribution)

Missing

Learned stable properties Unexpected shift

HA =B, OA=0B UB # jic, OB # OC

Figure 1: Local statistical normalization fails to handle dis-
tribution shift on ECL. The model retains outdated statis-
tics when predicting from flawed Segment A to B but faces
unseen shifts in Segment B and C. Shifts across all three
segments exceed prior inter and intra shift issues, posing a
broader global shift challenge for APT.

2023), SIN (Han, Ye, and Zhan 2024), and FAN (Ye et al.
2024)—have further refined this framework by modeling fu-
ture distributions adaptively to address intra-instance shift.

Despite their success, RevIN-like methods still face in-
herent limitations. First, Local statistics such as mean and
variance are sensitive to missing values and noise, which
are common in time series. Second, their instance-specific
normalization fails to capture global shifts, as shown in Fig-
ure 1, where features learned from Segments A and B col-
lapse in Segment C under abrupt change.

Moreover, the channel-wise static affine transforma-
tion (Bebis et al. 1999) in RevIN yields only limited im-
provements as shown in Table 1, and is entirely omitted in
follow-up works such as DishTS and SAN. This suggests
static transformations fail to address inter-channel distribu-
tion variance and are ineffective against distribution shift.

To overcome the limitations of local statistical normal-
ization, we propose Affine Prototype-Timestamps (APT), a
lightweight and model-agnostic plug-in. APT replaces static
affine transformations in standard normalization with dy-
namically generated parameters conditioned on timestamps,
inspired by vision style transfer (Huang and Belongie 2017).
This enables the forecasting pipeline to access global tempo-
ral semantics, which serve as an underlying schedule guid-
ing the behavior of the time series system, thereby enhancing
robustness and adaptability under distribution shift.


https://arxiv.org/abs/2511.12945v1

Methods | CATS |  Informer+RevIN | iTransformer | SparseTSF |  Avg. A
Affine (RevIN)| True | False | True | False | True | False | True | False | True- False
Metric  |MAE MSE|MAE MSE|MAE MSE|MAE MSE |MAE MSE [MAE MSE [MAE MSE [MAE MSE| MAE MSE
ECL 0.260 0.165|0.261 0.165|0.307 0.209(0.308 0.212|0.264 0.169(0.264 0.170|0.266 0.173|0.265 0.171| 0.000 J 0.001
Weather  |0.274 0.236(0.274 0.241|0.311 0.307{0.310 0.306|0.284 0.251|0.282 0.248|0.294 0.267|0.297 0.269| 0.000 | 0.001
ETThl 0.447 0.456(0.441 0.451|0.582 0.681|0.584 0.679(0.462 0.471|0.464 0.475|0.440 0.445|0.430 0.437|1 0.003 1 0.003
Exchange [0.437 0.352{0.436 0.349(0.677 0.708|0.644 0.727]0.493 0.423|0.475 0.398|0.499 0.434/0.492 0.428|10.015 10.004

Table 1: The affine transformations in RevIN do not provide performance gains, Metric T means worse performance.

o
'S
&l

O Different timestamps
O Same timestamps__

°
w
5

0.25

Is ;

ETTh1 ETTh2 Weather Electricity Traffic

Jensen - Shannon divergence

o
N
a

Figure 2: JS divergence of subseries with the same times-
tamp label in benchmark datasets

Easily accessible timestamps are widely regarded as con-
taining global temporal semantics (Li et al. 2025), and our
empirical analysis in Figure 2 confirms subseries sharing
similar timestamp labels such as “Time in Day” and “Day
in Week” tend to exhibit distributional similarity. APT ex-
ploits this regularity by embedding timestamps into a shared
latent space to enable conditioned affine transformations.

However, the sparsity of fine-grained timestamps com-
binations can cause insufficient training or poor general-
ization to unseen cases. Inspired by few-shot learning (Li
et al. 2022), APT employs prototype learning, replacing raw
timestamp embeddings with nearest-neighbor prototypes to
yield more robust representations. To further promote diver-
sity and balanced prototype usage, we introduce orthogonal-
ity and load-balancing losses.

Rather than learning static affine parameters, APT uti-
lizes global temporal semantics in timestamps to adaptively
assign distinct affine parameters to different subseries. To
achieve this, it first encodes timestamps and obtains ro-
bust representations through prototype matching, then con-
verts prototype embeddings into low-dimensional affine pa-
rameters via MLPs. Crucially, this process employs self-
supervised learning with the backbone and normalization
frozen, leveraging orthogonal loss for embedding diversity,
load-balancing loss for prototype usage, and extra affine reg-
ularization loss to ensure affine parameter convergence.

In summary, the central function of APT is to supply fore-
casting backbones with learnable and global distribution fea-
tures suppressed by normalization or disrupted by distribu-
tion shift; all components and optimization of APT are ex-
plicitly designed to serve this purpose.

Our contributions are as follow:

* We propose APT, a lightweight and model-agnostic plug-
in for overcoming limitations of local statistical normal-
ization and mitigating distribution shift.

» APT generates dynamic affine parameters via timestamp-
conditioned prototype matching and self-supervised
learning, delivering learnable distribution features com-
patible with any forecasting backbone and normalization.

» Extensive experiments with diverse backbones and nor-
malization methods confirm APT’s effectiveness in im-
proving forecasting accuracy under distribution shift.

2 Related Work
2.1 Deep Time Series Forecasting

As the backbone of forecasting, time series models are pri-
marily designed to learn temporal patterns such as seasonal-
ity and trends (Wang et al. 2025a; Shao et al. 2025). Deep
models like Informer (Zhou et al. 2021) improve long-term
forecasting, while DLinear (Zeng et al. 2023) shows that
simple MLP can also perform well. Recent developments
in forecasting focus on complex temporal dependencies, in-
cluding intra-channel long-term dependencies, as explored
by PatchTST (Nie et al. 2023) and SparseTSF (Lin et al.
2024), as well as inter-channel interactions, as addressed by
iTransformer (Liu et al. 2024) and CATS (Kim et al. 2024).
Distribution shift is not typically the focus of forecasting
backbone, but it is particularly important in the forecasting
pipeline because it significantly increases the difficulty of
pattern learning and reduces forecasting performance.

2.2 Normalization for Distribution Shift

Normalization has become a standard component in time
series forecasting due to its efficiency in handling distribu-
tion shift. RevIN (Kim et al. 2021) proposes a distribution-
pattern decoupling scheme by forcing the normalization
of histories to a unified domain and de-normalizing pre-
dictions, which greatly reduces the complexity of non-
stationary forecasting (Fu et al. 2025).

Subsequent works aim to recover suppressed distribu-
tional features because the distribution of history and fu-
ture within a single instance is inconsistent. DishTS (Fan
et al. 2023) learns intra- and inter-segment drift. SAN (Liu
et al. 2023) focuses on patch-level shift. SIN (Han, Ye, and
Zhan 2024) relearns statistics based on local invariance and



global variability criteria, and FAN (Ye et al. 2024) replaces
normalization with main frequency extraction and residual
forecasting.

2.3 Affine Transformation

Affine transformations were initially used to align parameter
spaces between layers after normalization, improving train-
ing stability of deep models. In conditional generative net-
works, they serve to reintroduce task-specific information by
modulating distributional features (Karras, Laine, and Aila
2019). CIN (Dumoulin, Shlens, and Kudlur 2017) assigns
affine parameters to each style via instance normalization.
AdaIN (Huang and Belongie 2017) extracts them from tar-
get images for arbitrary style transfer, and FiLM (Perez et al.
2018) extends this idea to feature-level conditioning. Such
conditional affine modulation has become standard across
vision and language tasks (Ziegler et al. 2019).

However, such conditional normalization techniques are
rarely explored in time series forecasting, where normaliza-
tion still mainly depends on local statistics. Inspired by these
advances, APT introduces timestamp-based conditioning to
generate dynamic affine parameters, enabling better adapta-
tion to distribution shift.

3 Preliminaries

3.1 Time Series Forecasting

Given the historical multivariate time series {xgl_) Lot ¢, =

2V, 29 Y € REXC where xy refer to the val-

ues at timestamp ¢, L is the length of historical window
and C is the number of channels. The objective of time se-

ries forecasting is to predict future series {yt(iﬁl:t i H}ic:1 =

{yii)l:y+H, - yt(fi:y+H} € RE*C by leveraging the fore-
casting model M to learn patterns from historical data,
where H is the future horizon:

{yt(izlzt-i-H}iC:I = M({xgl—)Lt}zC:ﬁ ()

3.2 Time Series Normalization

Given a normalization method N/, it normalizes historical
time series before inputting them into M to eliminate dis-
tribution differences, and then de-normalizes the time series
output by M to restore distribution information:

Wy =N MWV {20 80) @
Since statistics often have additional networks in N for
adaptive learning, the statistics adopted by A and N ™! of-
ten differ from the originals and are not identical to each
other. Take mean-variance normalization as an example. fi;

is the mean of historical time series {mgl_)L:t}iczl, and oy
is its variance. The subscripts | and h donate the normal-
ization and de-normalization stages respectively, where the
statistics are either preserved (RevIN) or relearned (Dish-
TS, SAN), depending on the normalization strategy. Equa-
tion 2 can be expressed as:
4 , 29 M(i) .

Uiren = MG Sl G)

(7)
Ot

4 Methodology
4.1 Overview

In Figure 3, the mainstream paradigm in time series forecast-
ing follows a normalization—forecasting—denormalization
pipeline. In this framework, normalization modules (e.g.,
RevIN, SAN) serve as plug-in components to either remove
or learn distributional information, while forecasting mod-
els (e.g., SparseTSF, iTransformer) constitute the backbone
for capturing temporal patterns.

Affine Prototype-Timestamp (APT) is a lightweight plug-
in module designed to break through the limitations of lo-
cal statistical normalization strategies. Within the forecast-
ing pipeline, the forward transformation of APT is applied
after normalization and before model input, and the inverse
transformation (de-APT) is applied after model output and
before de-normalization.

Instead of learning a single set of affine parameters ~ and
B, APT leverages global timestamps to adaptively assign
distinct affine parameters to different subseries. The goal is
to reintroduce learnable distributional features, conditioned
on global constraints, after distributional features have been
suppressed by normalization or disrupted due to distribution
shift. The following sections detail the implementation and
training procedure of APT.

4.2 Affine Prototype-Timestamp

To address global distribution shift and reduce reliance on
local statistical normalization, we propose APT, a module
that learns adaptive affine parameters conditioned on times-
tamp representations. Timestamps, commonly formatted as
% Y-%m-%d %H:%M, are widely available and encode rich
temporal semantics, making them a natural proxy for global
distributional regularities.

Given the input historical sequence {xil_) 1+, and fore-
cast horizon H, we extract the start timestamp ts;_j, of the
history and the end timestamp ¢s;4 g of the forecasting hori-
zon for each sample. To obtain semantically meaningful rep-
resentations, we discretize timestamps into categorical at-
tributes, such as “Time in Day” (TiD) and “Day in Week”
(DiW), which are broadly applicable and empirically cor-
related with global temporal variation.

Each timestamp ¢ is represented by the sum of its corre-
sponding attribute embeddings T':

T,=T!° + TPV 4)

However, discrete timestamp combinations can be sparse
and fail to generalize across unseen scenarios. Inspired by
few-shot learning, we replace raw timestamp embeddings
with learnable prototypes that capture shared temporal se-
mantics. As a result, we match each timestamp embed-
ding T; € RP against a shared learnable prototype library
P = {pj €RP };V:1 via inner product similarity:

S, =T,P" (5)

We then select the top-k£ most similar prototypes per
timestamps and compute their softmax similarity scores:

Wt,[l:lc] = Softmax(St[l:k]) (6)



Forecast fWA'\d’W\

Local statistical property G \

1 . &
P De-Normalization |

Normalization

1
: (Any method) 1 ,’ —————————————————————————————————— -\\ I (Any method) 1
S I e ) pm T ————— ~ SEn
1 7 >, History /  Prototypes ™ ‘I
1 | Timestamp |} Start il I
! ! r— I
1
AT P o PO SN
Time in D i i
I APT I‘—ll j TmeinDay ' GB— MLP ———>/ De-APT :
oy o B i T Lo
: I DayinWeek : 'I Yl B 1
Il ........ 1 Future [ ] ‘ Global :
vy ! End ! Affine H
\ i Sttt Transformation’/

Input

o

I 1
i Forecasting Model i
i E

Output

(Any method)

Figure 3: The pipeline of time series forecasting and the schematic of APT.

This yields a sparse weight matrix W; € RY, where only
the top-k£ entries per row are non-zero. The final timestamp
representation is formed via a weighted aggregation over the
prototype embeddings:

N
T,=>» W p, )
j=1
To encode both past and future temporal context, we aggre-

~ history

gate their embeddings: T; = T, . Option-
ally, channel identity embeddings ID € R“* P can be added
to incorporate per-channel variation when necessary.

Next, we employ two multi-layer perceptrons to map the
aggregated embedding to channel-wise affine parameters
7,8 € RICH*1 where {C'} denotes the option of whether
to adopt identity embeddings:

Ve, Bt = MLPW(Tt)»MLPB(Tt) (3)

These learned parameters modulate the normalized time
series before and after the forecasting model. Substituting
them into the normalization pipeline in Equation 3, the re-
vised inference process becomes:

‘ O] 0 _M(i) ‘ ‘ ‘
Uit =~ MO =G50 =5l ©)
Ve 0.t
This formulation enables globally informed affine trans-

formations that better adapt to distributional variations
across time.

~ futher
T

4.3 Training Strategy
Although APT is conceptually simple, learning timestamp-
conditioned affine parameters resembles self-supervised
clustering, potentially forming a bi-level optimization prob-
lem (Gould et al. 2016), similar to SAN (Liu et al. 2023).
To stabilize training and ensure effective learning of
timestamp semantics, we first freeze the normalization and
backbone, and train APT with additional epochs using the
following self-supervised losses:

Orthogonal Loss. To ensure diversity among timestamp
and prototype embeddings, we encourage orthogonality
within E = {T"'P, TP'W P} The loss is defined as:
Lossorn = ||[ETE© (1=D)|[3+[[I- ETE O I|[3 (10)
Where © is the Hadamard product, I is the identity matrix,
and || is the L2 norm. Loss,, penalizes correlation be-

tween embeddings and enforces unit-norm behavior, follow-
ing Barlow Twins (Zbontar et al. 2021).

Load Balancing Loss. Prototype matching may lead to
imbalanced usage, where few prototypes dominate. Inspired
by MoE imbalance issues (Wang et al. 2024b). To mitigate
this, we introduce a load balancing loss that encourages a
uniform distribution over prototype usage. This method be-
longs to batch-wise loss, where we penalize the prototype
weights W € RE* in each batch in Equation 7:

N B

2im1 Wiy L
Lossbalance = ( - 7) (11)

; Yo Xl Wy N
Affine Regularization Loss. To prevent trivial or unsta-
ble affine parameters, we follow self-supervised representa-
tion regularization strategies (Ermolov et al. 2021; Bardes,
Ponce, and Lecun 2022). Taking v as an example, the loss
is:

1
Lossp = E(l —

Training Processing. In the additional epochs of freezing
the backbone and normalization strategy, the overall pre-
training objective for APT is:

Lossapr = Lossorin + L0SSpaiance + LOSSR (13)

Once pretrained, APT is jointly optimized with the normal-
ization and forecasting modules under standard regression
loss (e.g., MSE). If required by the normalization strategy
(e.g., SAN), its loss can be included:

Lossmain = L05Spormal + L0SSpsE (14)



Methods | CATS | Informer | iTransformer | SparseTSF
Affine | | +APT | | +APT | | +APT | | +APT
Metrics |MAE MSE [ MAE MSE |MAE MSE |[MAE MSE |MAE MSE |MAE MSE |MAE MSE |[MAE MSE
None |0.264 0.168|0.262 0.166 | 0.426 0.369 | 0.408 0.332|0.270 0.169|0.265 0.165|0.269 0.173]0.267 0.171
| +RevIN |0.258 0.165|0.259 0.166 |0.337 0.252|0.326 0.233|0.259 0.164|0.259 0.162|0.265 0.173|0.264 0.173
Q | +Dish-TS | 0.272 0.173]0.270 0.172|0.379 0.305|0.371 0.297 | 0.266 0.166|0.261 0.161|0.272 0.173 |0.267 0.171
R| +SAN [0.277 0.175]0.276 0.175|0.349 0.266 | 0.324 0.231|0.258 0.159|0.261 0.160|0.271 0.172|0.266 0.165
+FAN |0.265 0.167|0.263 0.165|0.266 0.165|0.264 0.166|0.274 0.172|0.268 0.169 | 0.263 0.166 | 0.261 0.164
None |0.469 0.486|0.436 0.431|0.891 1.255|0.783 1.134|0.499 0.503|0.463 0.457 |0.439 0.436|0.437 0.435
=| +RevIN |0.443 0.448|0.431 0.427|0.597 0.715|0.562 0.657 | 0.473 0.485|0.441 0.441|0.429 0.427|0.427 0.424
&= | +Dish-TS | 0.475 0.485]0.452 0.456 |0.797 1.062|0.721 0.947 | 0.498 0.513|0.492 0.495|0.467 0.477|0.456 0.461
E +SAN |0.451 0.472|0.447 0.463 | 0.542 0.614|0.528 0.599 | 0.466 0.477|0.453 0.470|0.504 0.564 | 0.464 0.488
+FAN |0.478 0.482|0.473 0.478|0.519 0.533]0.506 0.529 |0.487 0.497|0.477 0.480|0.484 0.497 | 0.480 0.488
None |0.504 0.533|0.471 0.486|1.433 2.883|1.194 2.269|0.686 0.863|0.493 0.507 |0.492 0.515]0.484 0.498
S| +RevIN |0.425 0.392|0.417 0.390 [ 0.565 0.658 | 0.504 0.531|0.439 0.421|0.422 0.393 | 0.427 0.399 | 0.428 0.470
& | +Dish-TS | 0.476 0.466|0.444 0.419 | 1.321 3.261|0.795 1.318|0.537 0.587|0.485 0.497 | 0.631 0.933|0.533 0.612
E +SAN |0.438 0.406|0.433 0.404 | 0.718 0.939|0.447 0.438 | 0.438 0.418|0.414 0.410|0.559 0.619 | 0.485 0.478
+FAN |0.477 0.487|0.470 0.470|0.565 0.624|0.489 0.499 | 0.492 0.512|0.483 0.497 | 0.475 0.467 | 0.472 0.473
) None |0.617 0.888|0.415 0.316|0.996 1.640]0.920 1.337|0.655 0.783]0.551 0.599|0.426 0.352]0.418 0.342
2| +RevIN |0.435 0.401|0.424 0.381|0.592 0.587 | 0.519 0.460 |0.482 0.468 | 0.447 0.416|0.481 0.478|0.438 0.386
E | +Dish-TS | 0.562 0.774 | 0.493 0.468 | 0.930 2.105|0.704 1.003|0.509 0.496|0.476 0.395|0.540 0.531|0.502 0.476
$| +SAN |0.483 0.521|0.415 0.372|0.457 0.410|0.404 0.338|0.496 0.499|0.457 0.448 | 0.418 0.350|0.407 0.356
= | +FAN |0.492 0.458|0.482 0.457|0.562 0.591|0.533 0.528 |0.513 0.502|0.486 0.448|0.473 0.443|0.462 0.419
None |0.288 0.554|0.286 0.530|0.425 0.830|0.402 0.780|0.594 0.986 | 0.428 0.830|0.298 0.443|0.296 0.443
2| +RevIN |0.284 0.421{0.280 0.416|0.457 0.874|0.394 0.753|0.289 0.412|0.293 0.415|0.295 0.445|0.295 0.445
< | +Dish-TS | 0.293 0.438 | 0.278 0.417 | 0.445 0.861|0.403 0.761 | 0.305 0.429 |0.309 0.430|0.314 0.461 [ 0.310 0.457
&| +SAN [0.292 0.432]0.291 0.437(0.419 0.753|0.394 0.716 | 0.294 0.427|0.297 0.431|0.407 0.651 |0.363 0.569
+FAN |0.316 0.454]0.301 0.438|0.315 0.457|0.301 0.445|0.340 0.468|0.324 0.454|0.302 0.432|0.298 0.431
.| Nome [0.280 0.2290.268 0.223|0.396 0.4010.311 0.267 | 0.302 0.256 | 0.285 0.239|0.307 0.254|0.299 0.260
£ | +RevIN |0.258 0.221]0.259 0.224|0.294 0.279 |0.274 0.243 | 0.267 0.233|0.269 0.233|0.283 0.252|0.282 0.252
= | +Dish-TS | 0.277 0.225|0.276 0.226|0.316 0.296 | 0.295 0.276 | 0.296 0.258 | 0.285 0.240 | 0.301 0.240 | 0.299 0.240
g +SAN |0.277 0.225|0.279 0.227|0.286 0.261|0.276 0.245|0.271 0.228 |0.276 0.235|0.279 0.226 | 0.277 0.227
+FAN |0.281 0.231|0.283 0.234|0.285 0.246|0.280 0.245|0.288 0.236|0.276 0.230 | 0.276 0.228 | 0.278 0.229
1% count | 4 6 | 26 24 | 0 113 29| 7 6 | 24 25| 3 11 | 28 23

Table 2: Results of the main experiment

S Experiments
5.1 Experimental Setup

Baselines. As a plug-in designed to mitigate distribution
shift, APT is compatible with any time series forecasting
backbone and normalization strategy. To validate its effec-
tiveness, we select Informer (Zhou et al. 2021), iTrans-
former (Liu et al. 2024), SparseTSF (Lin et al. 2024), and
CATS (Kim et al. 2024) as the backbone, and RevIN (Kim
et al. 2021), Dish-TS (Fan et al. 2023), SAN (Liu et al.
2023), and FAN (Ye et al. 2024) as normalization strategies.

Datasets & Metrics. We select six datasets for main
experiments: ECL, ETThl, ETTh2, Exchange, Traffic,
Weather. The historical length L is 336, the main experi-
ments report average results over forecasting lengths H =
{96, 192, 336, 720}, and the average value is reported, while
extra experiments use H 336. Metrics include mean
squared error (MSE) and mean absolute error (MAE).

Details. We follow the BasicTS benchmark setup (Shao
et al. 2024). APT uses “Day in Week” and “Time in Day”
as timestamp features, except on Exchange (only “Day of
Week). The number of prototypes depends on sampling

rate: 5 for daily, 30 for hourly, and 40 for 10-minute fre-
quency. All embeddings are 20-dimensional with MLP hid-
den size 32, yielding 1.5K—5K parameters. APT trains with a
learning rate of 5e-5 for 1-5 extra epochs until convergence.
The optimizer is shared with other modules, with gradient
updates controlled by loss weight A\. More details are in Ap-
pendix B and C.

5.2 Main Results

On datasets with strong distribution shifts like ETTh1/2
and Exchange, APT yields 4%—40% performance gains
across diverse backbone—normalization combinations. Com-
bined with robust normalization, even the weaker Informer
matches or surpasses state-of-the-art backbones.

CATS, iTransformer, and SparseTSF are among the most
advanced backbones, while RevIN, FAN and SAN are
the most effective normalization strategies. Even on stable
datasets like ECL, where performance typically plateaus,
APT still yields consistent gains and often achieves the best
overall results with negligible risk of degradation. More and
combined with data analysis are provided in Appendix C.4.



0.28 0176  0.475
0275 | 1 0473 045 |
0.27 017 0.425
0.265 |_| HI_IH I_I _H 0.167 0.4
0.26 0164  0.375
MAE MSE
CATS

0.285 — 0.175  0.271
028 | 1 0.472

0.275 0169 0269 |
027 | 0.186 {567
0.265 _IH |_| |_| 0.163

0.26 0.16 0.265

MAE MSE
iTransformer

0.42

O APT
1 0.395
I i % O W/0 TopK
—||—| ’7 0.345
O
MAE '—IMSE 0.32 O WI/O Prototype
Informer
0171
B O W/O de-APT
0.17
Ll [
0.169

MA

MSE gwiop

E
SparseTSF

Figure 4: The ablation study results of APT components on the ECL dataset, L = 336, H = 336.

5.3 Ablation Study

In Figure 4 and Appendix C.7, we conduct ablations from
two perspectives: component-wise and training strategy.

Component Ablation: We evaluate APT by removing key
components:

* W/O Top-k: Remove Top-k from Equation 6;

¢ W/O Prototype: Use raw timestamp embeddings with-
out prototype matching;

¢ W/O de-APT: Remove inverse transformation of APT;

¢ W/O ~ or 8: Remove scaling or bias in affine transfor-
mation;

Removing de-APT degrades performance, as it forces the
model to reconstruct distributional properties. Top-k is simi-
lar to expert activation and mitigates feature over-smoothing
by enforcing sparsity during prototype aggregation. In con-
trast, prototype learning alleviates the challenges of few-shot
learning by compressing timestamp semantics, improving
robustness and preventing overfitting. Between affine com-
ponents, v is more crucial than the bias S under distribution
shift, because mean drift will generate abundant supervisory
signals to guide the backbone to adapt.

Training Strategy Ablation: APT learns timestamp-
aware affine parameters via self-supervised pretraining,
while freezing backbone and normalization. Table 3 and Ap-
pendix C show the effect of ablating components:

¢ W/O \: Remove the loss weighting coefficient from APT
pre-training, sharing learning rate with the backbone;

e W/O Lossyrin, Or L0SSpaiance OF Lossgr: Remove or-
thogonality, load balancing, or affine regularization loss;

* W/O Lossapp: Skip pretraining entirely, optimizing
APT only with the main loss.

Recommended learning rates for {CATS, Informer,
iTransformer, SparseTSF} are {5e-3, 2e-4, 5e-4, 2e-3}, with
APT pretraining fixed at 5e-5. Accordingly, A is set to {5e-2,
2.5e-1, le-1, 2.5e-2}. Without A\, APT shares the backbone’s
rate, causing overfitting and unstable timestamp semantics.

t-SNE of [TiD + DiW] Embedding § t-SNE of Prototype Embeddin
]
~N

150 %
40 £ 60 "o 25
1250 % o x
20 140 e %% 208
1008 [} [ ] .. £
) ° ® 159
0 ’ 752 % O =
o ° [}
_ ﬁ oz O oo ® 108
20 X o ° o &
# 25 2 e © 5
-40 ) ® a0 0oo
40 20 0 20 40 £ %0 60 30 0 30 °

Figure 5: Visualization of APT timestamps and prototype
embeddings on ECL dataset and iTransformer

Each pretraining loss targets a distinct goal: LoSSqrtn
encourages embedding diversity, Losspgiqnce prevents fea-
ture collapse (Hua et al. 2021), and Lossg stabilizes con-
vergence for regression compatibility. As they govern em-
beddings, prototype matching, and parameter scaling re-
spectively, these losses are complementary and essential
for APT’s stability. Omitting pretraining altogether (W/O
Loss opr) causes APT to fail, with performance reverting
to backbone levels.

5.4 Visualization

t-SNE of Embedding: Figure 5 shows the timestamp and
prototype embeddings learned by APT with iTransformer
on the ECL dataset. Timestamp embeddings form distinct
clusters aligned with “Day in Week,” while “Time in Day”
varies orthogonally in Appendix C.9. Prototypes are also
well-separated, but their embeddings still preserve certain
timestamp-related structure as orthogonal losses serve as
soft supervision.

Forecasting cases: Figure 6 presents forecasting cases
on the 6th channel of ETTh2 without normalization. While
most backbones, except Informer, capture periodic pat-
terns well, they fail to handle distribution shifts over time.
APT mitigates this issue by applying timestamp-conditioned
affine transformations, independently of the backbone, to
better align predictions with data distributions.



W/0 W/0O W/0 W/0 W/0
Methods APT A Lossortn Losspatance Lossr Lossapr

Metrics | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE

CATS 0.264 0.166 | 0.269 0.169 | 0.265 0.167 | 0.266 0.169 | 0.265 0.168 | 0.267 0.170

(-j Informer 0413 0.332 | 0441 0.379 | 0.429 0.350 | 0.412 0.329 | 0436 0.377 | 0.453 0.395

& | iTransformer | 0.268 0.165 | 0.269 0.169 | 0.268 0.165 | 0.269 0.167 | 0.269 0.168 | 0.270 0.168

SparseTSF 0.268 0.170 | 0.270 0.171 | 0.269 0.171 | 0.269 0.171 | 0.269 0.171 | 0.268 0.171

— CATS 0.437 0.443 | 0451 0.458 | 0.438 0.446 | 0.448 0.460 | 0.439 0.446 | 0.448 0.459

ﬁ Informer 0.797 1.121 | 0.856 1.249 | 0.839 1.215| 1.009 1.495 | 0.787 1.121 | 0.818 1.198

&~ | iTransformer | 0.474 0.478 | 0.472 0.481 | 0472 0.479 | 0.469 0.474 | 0.487 0.498 | 0.483 0.491

= SparseTSF 0.438 0451 | 0447 0.458 | 0.441 0.453 | 0448 0460 | 0.441 0.454 | 0.448 0.459

) CATS 0.402 0.276 | 0.411 0.286 | 0.407 0.290 | 0.406 0.278 | 0.402 0.276 | 0.560 0.500

g Informer 0976 1.490 | 1.144 2.070 | 1.009 1.789 | 1.009 1.506 | 0.989 1.490 | 1.082 1.734

= iTransformer | 0.502 0.445 | 0.634 0.6549 | 0.629 0.669 | 0.559 0.531 | 0.544 0.508 | 0.655 0.785

é SparseTSF 0.431 0.316 | 0.432 0.321 | 0.443 0.333 | 0.431 0.316 | 0.439 0.330 | 0.448 0.343

5 CATS 0.283 0.242 | 0.287 0.243 | 0.300 0.246 | 0.300 0.247 | 0.295 0.243 | 0.301 0.246

= Informer 0.315 0.270 | 0.315 0.271 | 0.326 0.284 | 0.328 0.291 | 0.410 0.389 | 0.554 0.816

$ | iTransformer | 0.293 0.251 | 0.296 0.254 | 0.293 0.251 | 0.295 0.254 | 0.296 0.254 | 0.300 0.257

= SparseTSF 0.312 0.267 | 0.314 0.267 | 0.320 0.270 | 0.322 0.271 | 0.320 0.270 | 0.319 0.269

Table 3: Results of ablation studies on training strategies across four datasets. L = 336, H = 336
—— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT
0.0 05 0.0 0.0
-0.5 0.0 -05 -0.5
-0.5
1.0 -1.0 -1.0
-1.0
15 -15 -1.5 -1.5
-2.0 20 -2.0 -2.0
0 100 200 300 0 100 200 300 0 100 200 300
Informer iTransformer SparseTSF

Figure 6: Visualization of forecasting results for different models on the ETTh2 dataset without normalization strategy

I Raw data
N APT
I Norm

70%
40%
20%
10%

Percentage (%)

Figure 7: 3D visualization of temporal distribution and ratio
of forecasting pipeline at different stages on ETTh1.

Temporal distribution: As shown in Figure 7, raw data
exhibit severe distribution shift and its distributional features
are disrupted, which is the phenomenon we emphasized ear-
lier and it can cause great damage to backbone’s learning of
temporal patterns. Normalization maps series to zero mean
and unit variance; while RevIN decouples distribution from
patterns to improve robustness, it also suppresses informa-

tive distribution. In contrast, APT uses timestamps to encode
global distribution features, forming compact yet discrimi-
native representations adaptable to temporal shift.

Due to space limitations, the complete results and more
experiments are provided in Appendix C to better under-
stand APT: data motivation (C.2), other plug-ins (C.3), ex-
tra main results (C.4), hyper-Parameter (C.5), paramenter
count (C.6), extra ablation study (C.7), cross-setting fine-
tuning (C.8), visualization (C.9) and discussion (D).

6 Conclusion

In this work, we propose Affine Prototype-Timestamp
(APT), a lightweight and model-agnostic plug-in to enhance
time series forecasting under distribution shifts. APT em-
ploys discretized timestamps and prototype learning to in-
troduce timestamp-conditioned affine transformations, en-
abling forecasting models to recover global distributional
features that may be suppressed by normalization or dis-
torted by distribution shifts.

In future work, we will explore online adaptation for
streaming data and incorporate external modalities such as
text or images to enhance shift awareness, further strength-
ening the real-world applicability of deep forecasting mod-
els in domains like weather, finance, and energy.



Acknowledgment

This work is supported by the NSFC underGrant Nos.
62372430 and 62502505, the Youth Innovation Promotion
Association CAS No.2023112, the Postdoctoral Fellowship
Program of CPSF under Grant Number GZC20251078, the
China Postdoctoral Science Foundation No.2025M771542
and HUA Innovation fundings.

References

Bardes, A.; Ponce, J.; and Lecun, Y. 2022. VICReg:
Variance-Invariance-Covariance Regularization For Self-
Supervised Learning. In /ICLR.

Bebis, G.; Georgiopoulos, M.; da Vitoria Lobo, N.; and
Shah, M. 1999. Learning affine transformations. Pattern
recognition, 32(10): 1783-1799.

Dumoulin, V.; Shlens, J.; and Kudlur, M. 2017. A Learned
Representation For Artistic Style. In ICLR.

Ermolov, A.; Siarohin, A.; Sangineto, E.; and Sebe, N. 2021.
Whitening for self-supervised representation learning. In
ICML, 3015-3024. PMLR.

Fan, W.; Wang, P.; Wang, D.; Wang, D.; Zhou, Y.; and Fu, Y.
2023. Dish-ts: a general paradigm for alleviating distribution
shift in time series forecasting. In AAAI, volume 37, 7522—
7529.

Ferté, T.; Dutartre, D.; Hejblum, B. P.; Griffier, R.; Jouhet,
V.; Thiébaut, R.; Legrand, P.; and Hinaut, X. 2024. Reser-
voir Computing for Short High-Dimensional Time Series:
an Application to SARS-CoV-2 Hospitalization Forecast. In
ICML, 13570-13591. PMLR.

Fu, Y.; Shao, Z.; Yu, C.; Li, Y.; An, Z.; Wang, Q.; Xu, Y.;
and Wang, F. 2025. Selective Learning for Deep Time Series
Forecasting. arXiv preprint arXiv:2510.25207.

Gould, S.; Fernando, B.; Cherian, A.; Anderson, P.; Cruz,
R. S.; and Guo, E. 2016. On differentiating parameterized
argmin and argmax problems with application to bi-level op-
timization. arXiv preprint arXiv:1607.05447.

Han, L.; Ye, H.-J.; and Zhan, D.-C. 2024. SIN: selective and
interpretable normalization for long-term time series fore-
casting. In ICML.

Hua, T.; Wang, W.; Xue, Z.; Ren, S.; Wang, Y.; and Zhao, H.
2021. On feature decorrelation in self-supervised learning.
In CVPR, 9598-9608.

Huang, X.; and Belongie, S. 2017. Arbitrary style transfer
in real-time with adaptive instance normalization. In ICCV,
1501-1510.

Karras, T.; Laine, S.; and Aila, T. 2019. A style-based gen-
erator architecture for generative adversarial networks. In
CVPR, 4401-4410.

Kim, D.; Park, J.; Lee, J.; and Kim, H. 2024. Are Self-
Attentions Effective for Time Series Forecasting? In Ad-
vances in Neural Information Processing Systems 38: An-
nual Conference on Neural Information Processing Systems
2024, NeurlIPS 2024, Vancouver, BC, Canada, December 10
- 15, 2024.

Kim, T.; Kim, J.; Tae, Y.; Park, C.; Choi, J.-H.; and Choo, J.
2021. Reversible instance normalization for accurate time-
series forecasting against distribution shift. In /CLR.

Li, T.; Li, Z.; Rockwell, H.; Farimani, A.; and Lee, T. S.
2022. Prototype memory and attention mechanisms for few
shot image generation. In /CLR, volume 18.

Li, Y.; Shao, Z.; Xu, Y.; Qiu, Q.; Cao, Z.; and Wang, F.
2024. Dynamic frequency domain graph convolutional net-
work for traffic forecasting. In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 5245-5249. IEEE.

Li, Y.; Zezhi, S.; Yu, C.; Qian, T.; Zhang, Z.; Du, Y.; He,
S.; Wang, F.; and Xu, Y. 2025. STA-GANN: A Valid and
Generalizable Spatio-Temporal Kriging Approach. In Pro-
ceedings of the 34th ACM International Conference on In-
formation and Knowledge Management, 1726—1736.

Lin, S.; Lin, W.; Wu, W.; Chen, H.; and Yang, J. 2024.
SparseTSF: Modeling Long-term Time Series Forecasting
with* 1k* Parameters. In /CML.

Liu, Y;; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; and
Long, M. 2024. iTransformer: Inverted Transformers Are
Effective for Time Series Forecasting. In ICLR.

Liu, Z.; Cheng, M.; Li, Z.; Huang, Z.; Liu, Q.; Xie, Y.;
and Chen, E. 2023. Adaptive normalization for non-
stationary time series forecasting: A temporal slice perspec-
tive. NeurlIPS, 36: 14273-14292.

Nie, Y.; Nguyen, N. H.; Sinthong, P.; and Kalagnanam, J.
2023. A Time Series is Worth 64 Words: Long-term Fore-
casting with Transformers. In ICLR.

Perez, E.; Strub, F.; De Vries, H.; Dumoulin, V.; and
Courville, A. 2018. Film: Visual reasoning with a general
conditioning layer. In AAAI volume 32.

Shao, Z.; Li, Y.; Wang, F.; Yu, C.; Fu, Y.; Qian, T.; Xu, B.;
Diao, B.; Xu, Y.; and Cheng, X. 2025. Blast: Balanced sam-
pling time series corpus for universal forecasting models.
In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V. 2, 2502-2513.
Shao, Z.; Wang, F.; Xu, Y.; Wei, W.; Yu, C.; Zhang, Z.;
Yao, D.; Sun, T.; Jin, G.; Cao, X.; et al. 2024. Exploring
progress in multivariate time series forecasting: Compre-
hensive benchmarking and heterogeneity analysis. TKDE,
37(1): 291-305.

Shao, Z.; Zhang, Z.; Wang, F.; Wei, W.; and Xu, Y. 2022.
Spatial-temporal identity: A simple yet effective baseline for
multivariate time series forecasting. In CIKM, 4454-4458.
Wang, C.; Qi, Q.; Wang, J.; Sun, H.; Zhuang, Z.; Wu, J.; and
Liao, J. 2024a. Rethinking the power of timestamps for ro-
bust time series forecasting: A global-local fusion perspec-
tive. NeurlIPS, 37: 22206-22232.

Wang, F; Li, Y.; Shao, Z.; Yu, C.; Fu, Y;; An, Z.; Xu, Y.; and
Cheng, X. 2025a. ARIES: Relation Assessment and Model
Recommendation for Deep Time Series Forecasting. arXiv
preprint arXiv:2509.06060.

Wang, H.; Pan, L.; Chen, Z.; Yang, D.; Zhang, S.; Yang,
Y.; Liu, X.; Li, H.; and Tao, D. 2025b. FreDF: Learning to
Forecast in the Frequency Domain. In ICLR.



Wang, L.; Gao, H.; Zhao, C.; Sun, X.; and Dai, D. 2024b.
Aucxiliary-loss-free load balancing strategy for mixture-of-
experts. arXiv preprint arXiv:2408.15664.

Ye, W.; Deng, S.; Zou, Q.; and Gui, N. 2024. Frequency
Adaptive Normalization For Non-stationary Time Series
Forecasting. In NeurlPS.

Yu, C.; Wang, F.; Shao, Z.; Qian, T.; Zhang, Z.; Wei, W.;
An, Z.; Wang, Q.; and Xu, Y. 2025. GinAR+: A Robust End-
To-End Framework for Multivariate Time Series Forecasting
with Missing Values. TKDE.

Zbontar, J.; Jing, L.; Misra, I.; LeCun, Y.; and Deny, S. 2021.
Barlow twins: Self-supervised learning via redundancy re-
duction. In ICML, 12310-12320. PMLR.

Zeng, A.; Chen, M.; Zhang, L.; and Xu, Q. 2023. Are trans-
formers effective for time series forecasting? In AAAI, vol-
ume 37, 11121-11128.

Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.;
and Zhang, W. 2021. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In AAAI, vol-
ume 35, 11106-11115.

Ziegler, Z. M.; Melas-Kyriazi, L.; Gehrmann, S.; and Rush,
A. M. 2019. Encoder-agnostic adaptation for conditional
language generation. arXiv preprint arXiv:1908.06938.



A Notation

Notation| Description

T Time series, especially historical parts

Length of historical time series

Time series, especially future parts

Length of future time series

Deep Time Series Forecasting Model

Time Series Normalization Strategy

L

Y
H
M
N

t

Subscript, representing a certain moment in time

Timestamp information

Prototype embedding, p € P .

Similarity matrix

Identity matrix

General term for T and P

Weights used for prototype weighting
Mean

Variance

Affine parameters for scaling

|
|
|
|
|
|
|
|
| Timestamp embedding
|
|
|
|
|
|
|
|
|

Affine parameters for bias

> |||z S|\~ =S

Learning rate factor for APT
typically (5e-5)/lr, Ir is learning rate of MSE

Table 4: Explanation of notations leveraged in APT

B Baselines
B.1 Deep Time Series Forecasting Model

CATS (Kim et al. 2024) is a time series forecasting model
constructed entirely by cross-channel attention. It adopts the
Patch strategy (Nie et al. 2023), uses future-related param-
eters as queries and masks potentially interfering temporal
information during forecasting. Inspired by the effectiveness
of linear model forecasts (Zeng et al. 2023), CATS strikes a
balance between efficiency and modeling complex temporal
dependencies.

Informer (Zhou et al. 2021) is one of the pioneers in the
field of deep time series forecasting. As a classic work, it
reflects on the efficiency issues of Transformers in time se-
ries forecasting, proposes a sparse attention mechanism, and
achieves effective prediction.

iTransformer (Liu et al. 2024) addresses the limitations of
previous work, which treated the time series dimension as
a temporal token while ignoring inter-channel correlations,
and the efficiency issues arising from increasing forecast
lengths. To address these issues, it proposes treating dif-
ferent channels as tokens and applying an attention mech-
anism between channels, thereby achieving more effective
forecasts than previous models.

SparseTSF (Lin et al. 2024) is a state-of-the-art linear fore-
casting model that further reduces the number of param-
eters. It divides time series into multiple periods through
downsampling, and effectively forecasts time series through
cross-period forecasting with parameter sharing and upsam-

pling.

Factors for selecting those backbones: Informer is a pio-
neering work in long-term time series forecasting. As a clas-
sic forecasting model, it incorporates two temporal model-
ing strategies: Transformer and channel dependency. Even
though its performance is limited in other works, we can
prove that with the help of advanced normalization and APT,
it can still achieve SOTA performance in many cases.

SparseTSF inherits from DLinear and offers better perfor-
mance. It includes strategies such as MLP, channel indepen-
dence, and patch. iTransformer is based on Transformer and
has a channel interaction strategy that captures spatial infor-
mation and temporal patterns better than Informer’s channel
dependency. Compared to iTransformer, CATS uses a more
refined channel interaction method with cross-attention, and
also has the patch strategy.

B.2 Time Series Normalization Strategy

RevIN (Kim et al. 2021) is a classic work that alleviates shift
in time series forecasting. Time series are mutually coupled
with patterns and distributions. Forecasting models mainly
learn pattern information related to temporal dependencies,
while distributions are considered components unrelated to
forecasting. By separating distribution information before
inputting it into the model through a normalization strategy
and restoring that information after forecasting through in-
verse normalization, RevIN effectively improves the fore-
casting capabilities of various models.

DishTS (Fan et al. 2023) believes that time series shift is
constantly changing, not only within the time series, but also
between the history and the future. To this end, it proposes
using additional network learning distribution statistics and
forecasting the future statistics required for inverse normal-
ization.

SAN (Liu et al. 2023) thinks that the scenarios explored by
Dish-TS are still not comprehensive enough. The distribu-
tion of time series continues to shift, and the length of his-
tory and future has exceeded the scope of effective descrip-
tion. Therefore, it further compresses the learning of drift
information to the patch level and attempts to learn the shift
flow within a single sample.

FAN (Ye et al. 2024) actually switches the time series shift
from a distribution perspective to time series decomposition.
Non-stationary information is considered to be minor com-
ponents that are difficult to learn effectively. Therefore, FAN
uses adaptive filtering to input only information at the main
frequency into the model, adopts the residuals from the ad-
ditional network information, and adds residual forecasting
terms after model forecasting.

PS: It should be noted that, with the exception of
Informer, other forecasting models originally come with
RevIN due to its irreplaceable performance gains, or do not
have an affine transformation version. In the APT test, we



first completely separated the normalization strategy from
the model itself. When testing the addition of RevIN, we
adopt the original version containing affine transformation.

C Experiments
C.1 Experimental details

Our experiments fully adopt the default configuration of
the public-source and fair benchmark BasicTS', including
ADAM as the default optimizer, with each model having its
own dedicated parameter configuration file for each dataset.
All experiments are conducted on a single NVIDIA GeForce
RTX 4090 GPU, with an Intel(R) Xeon(R) Gold 6338 CPU
@ 2.00GHz, and each experiment is limited to 4 threads.

C.2 Dataset Information

ETTh1&h22: ETT is a series of datasets, where 1> and 2"
represent different transformers, ’h” represents the sampling
rate per hour. APT does not adopt its 15-minute sampling
rate dataset. The first six variables in each ETT data set are
overload data, and the last one is oil temperature.

ECL?: ECL, i.e. the Electricity dataset, records the hourly
electricity consumption of 321 clients between 2012 and
2014 (unit: kilowatt-hours).

Exchange®: The ExchangeRate datasets includes daily ex-
change rates for eight countries: Australia, the United King-
dom, Canada, Switzerland, China, Japan, New Zealand, and
Singapore.

Traffic*: Traffic is a collection of hourly data provided by
the California Department of Transportation that describes
road usage measured by various sensors on highways in the
San Francisco Bay Area.

Weather*: Weather records every 10 minutes throughout
2020 from Autoformer, including 21 meteorological indica-
tors such as air temperature and humidity.

Table 5 presents key information about the datasets, par-
ticularly the sampling rates. The primary parameters of APT
are configured based on the sampling rate, including the
timestamps we adopt, the number of prototypes, and top-k.
Furthermore, we show the parameter count of APT under
the setting of channel-shared affine parameters, which is of-
ten significantly smaller than that of time series forecast-
ing models. In experiments utilizing channel-wise affine pa-
rameters, the additional parameter count depends on the
dataset’s channel count and the embedding dimension (fixed
at 20), and the increase remains minimal.

Motivation verification from data perspective: One of
the motivations for APT is that local statistical normalization
cannot address variations within time series, such as missing
values or noise.

Noise is affected by random factors from the sensor’s own
mechanisms and the external environment. As information
coupled with each step of time series, noise is typically dif-
ficult to detect directly. We refer to BasicTS’s discussion on

"https://github.com/GestaltCogTeam/BasicTS
*https://github.com/zhouhaoyi/ETDataset
3https://github.com/laiguokun/multivariate-time-series-data
*https://github.com/thuml/Autoformer

model information for time series datasets, analyzing pattern
stability and distribution drift, and conclude that ECL, Traf-
fic, and Weather are low-noise datasets with stable patterns
and low distribution drift, while ETT and ExchangeRate are
the opposite.

Missing values often occur in real-world scenarios due
to sensor failures. Even benchmarks often contain a large
amount of missing data, and prior data processing methods
may vary. Due to the lack of more prior knowledge, we have
broadly categorized missing value handling into two cases:
zero-filling and previous-value-filling:

» Zero-filling: Directly fill missing signals with 0. Note
that active filling in the Weather dataset is -9999, and
cases where precipitation is 0 have been excluded.

* Previous-value-filling: When the current value cannot be
obtained, the previous value is used. Since the probabil-
ity of recording two completely identical floating-point
numbers in succession is very low, we do not perform fur-
ther exclusions, but otherwise we would misjudge small
fluctuations in the values.

The summary of the missing rate is shown in Table 6.
We have calculated the two types of missing rates for differ-
ent datasets, as well as the maximum and minimum missing
rates and their channels. The missing rate for ECL, Traffic,
and Weather is one level lower than that of other datasets,
and its main missing rate is often affected by only a few
channels, with most channels remaining almost free of miss-
ing values.

On the contrary, the ETT and Exchange datasets not only
have fewer channels but also higher minimum missing rates,
which implies that the statistical properties of each instance
may be significantly affected. However, the impact of previ-
ous value filling on mean calculation is limited, but it has a
profound detrimental effect on variance.

In summary, the analysis of noise and missing rates in-
dicates that the temporal information in ECL and similar
datasets is more stable and reliable, while ETT and Ex-
change datasets are unreliable and exhibit severe distribution
shift. These analyses will support certain phenomena in sub-
sequent performance analysis and ablation studies of APT.

C.3 Plug-in Supplementary Study

In this section, we added two plug-ins unrelated to distribu-
tion drift for supplementary study:

* FreDF (Wang et al. 2025b): FreDF is a work that ex-
plores the autocorrelation of time series from a frequency
domain perspective, using an additional frequency do-
main loss function to enhance the modeling capabilities
of time series correlation.

* GLAFF (Wang et al. 2024a): GLAFF is a classic study
on the role of timestamp information in time series fore-
casting. It introduces global information to the output
of the forecasting pipeline through additional timestamp
modeling. Its motivation is completely different from that
of APT. GLAFF focuses on modeling global pattern in-
formation and weighting it with the forecasting results,
while APT improves the normalization and denormaliza-
tion processes through affine transformations to mitigate



Datasets | Domain | Period | Frequency | Channel | Split | Timestamps | Prototype | Top K | Param.
ECL | Energy | 2012 - 2014 lhour | 321 |7:1:2| TiD&DiW | 30 | 3 | 2.64K
ETThl1&2|  Energy  |2016/7/10:00 - 2018/6/26 19:45| 1hour | 7 | 6:2:2| TiD&DiW | 30 | 3 | 264K
Exchange | Economy | 1990 - 2016 1 day | 8 | 7:1:2 | DiW | 5 | 2 | 1.82K
Traffic | Transportation | 2016/7/1 02:00 - 2018/7/201:00| 1 hour | 862 |7:1:2| TiD&DiW | 30 | 3 | 264K
Weather | Nature | 2020/1/10:10-2021/1/10:00 | 10mins | 21 |7:1:2| TiD&DiW | 40 | 4 | 51K

Table 5: Dataset description and corresponding parameters

Datasets | Overall missing rate | 0 fill rate | Previous value fill rate | Min. rate and channel | Max. rate and channel

ECL | 4.03% | 1.08% | 2.94% 10.10% | 133 185.89% | 298
ETThl | 7.38% | 0.99% | 6.38% 3.65% | 2 | 14.44% |
ETTh2 | 23.68% | 9.79% | 13.89% | 4.24% | 0 | 72.68% |
Exchange | 8.60% | 0% | 8.60% | 4.38% | 1 32.64% | 4
Traffic | 1.68% | 0.89% | 0.78% 0.08% | 267 11585%| 751
Weather | 3.39% | 0.01% | 3.38% 10.05% | 17 10.44% | 8
Table 6: Detailed report on dataset missing rates
Methods | APT | FreTS | GLAFF additional 1.8M parameters and requires twice the training
Metrics |[MAE MSE [MAE MSE |[MAE MSE time compared to A.PT. In contrast, APT. only introduces
2.64K to 5.1K additional parameters and incurs almost no
96 [0.410 0.399|0.410 0.388|0.414 0.406 increase in training time. We attribute this inefficiency to
=| 192 10.430 0.43210.438 0.434)0.462 0.471 GLAFF’s reliance on complex attention mechanisms to cap-
E %8 g:ﬁ 82% 8;‘?2 8‘5‘?2 8213 8;‘22 ture global timestamp information. Its inferior performance
= . . : : : : and higher cost inevitably limit its practical applicability and
| Avg. [0.441 0.441|0.455 0.450]0.475 0.485 hinder deeper exploration of timestamp-driven time series
_| 96 [0.208 0.158(0.207 0.159|0.211 0.165 modeling.
21192 10.248 0.201|0.249 0.204|0.250 0.220
w| 336 [0.284 0.250(0.292 0.260|0.288 0.260 C.4 Main Experiment
L1 720 0.355 0.323]0.347 0.334|0.350 0.359 . . .
= The complete results of the main experiment are shown in
| Avg. |0.269 0.233]0.274 0.239]0.275 0.251 Tables 12 and 13.

Table 7: Performance comparison between APT and other
plug-ins on iTransformer. H =336

time series distribution shift, and the dynamic affine pa-
rameters provided by APT for each instance have no re-
gression capability.

As shown in Table 7. APT outperforms both FreDF and
GLAFF by 2%-10% on ETThl and Weather when ap-
plied to iTransformer. Moreover, APT achieves better per-
formance with longer forecasting horizons H, implying its
stronger global temporal awareness that support long-term
dependency modeling. In general, longer prediction hori-
zons exacerbate distribution shift in time series, and this
trend aligns well with both the motivation and design of
APT timestamps serve better as a tool to alleviate distribu-
tion shift than as a pattern modeling signal.

APT’s consistent advantage over GLAFF further supports
this view. In our experiments, iTransformer alone contains
6.6M parameters, while GLAFF, as a plug-in, introduces an

APT yields the most significant improvements on In-
former, achieving 3%—-50% gains across most datasets. It
consistently enhances Informer’s performance when com-
bined with any normalization strategy. Specifically, on ECL
and Traffic, combining Informer + APT with FAN achieves
performance comparable to or exceeding that of other back-
bones. On Weather, APT reaches similar results regardless
of the normalization strategy used. We consider that this
result may affect the role of channel dependence, an early
strategy in multivariate time series forecasting. In datasets
with stable time series patterns, channel dependence does
not show a significant performance gap compared to other
methods such as channel independence and interaction, but
this still requires further research.

On ETT and Exchange, APT improves performance by
2%—-10% across various backbone—normalization combina-
tions, with virtually no cases of degradation. These datasets
are known for exhibiting significant distribution shift and
containing missing values, which often impair the effec-
tiveness of statistical normalization methods. By leverag-
ing timestamps, APT introduces global temporal distribution
awareness and dynamically generates affine parameters, ef-



+ +
Methods APT Double prototype Identity embedding “Day in Month”
Metrics | MAE MSE | MAE MSE | MAE MSE | MAE MSE
CATS 0.264 0.166 0.269 0.170 0.270 0.170 0.273 0.191

5 Informer 0.413 0.332 0419 0.346 0.512 0.613 0.443 0.389
& | iTransformer 0.268 0.165 0.268 0.166 0.270 0.169 0.270 0.169
SparseTSF 0.268 0.170 0.268 0.170 0.268 0.170 0.268 0.170

— CATS 0.437 0.443 0.436 0.442 0.447 0.461 0.450 0.463
ﬁ Informer 0.797 1.121 0.790 1.154 0.792 1.293 0.951 1.967
&~ | iTransformer 0.474 0.478 0.470 0.477 0.474 0.482 0.526 0.599
= SparseTSF 0.438 0.451 0.443 0.455 0.437 0.450 0.442 0.454
& CATS 0.402 0.276 0.406 0.284 0.397 0.265 0.410 0.294
g Informer 0.976 1.490 0.970 1.380 0.947 1.410 1.120 1.884
< | iTransformer 0.502 0.445 0.558 0.540 0.477 0.396 0.652 0.743
& SparseTSF 0.431 0.316 0.442 0.333 0.447 0.326 0.459 0.358
5 CATS 0.283 0.242 0.308 0.251 0.293 0.246 0.304 0.259
= Informer 0.315 0.270 0.323 0.264 0.364 0.346 0.333 0.702
$ | iTransformer 0.293 0.251 0.297 0.256 0.303 0.256 0.297 0.257
= SparseTSF 0.312 0.267 0.316 0.270 0.317 0.269 0.317 0.268

Table 8: Results of hyper-parameter sensitivity study across four datasets. L = 336, H = 336

fectively adapting to time series distribution shift.

On more stable datasets such as ECL, Traffic, and
Weather, the improvements from APT are more mod-
est. Without other normalization strategies, APT brings
2%-10% gains to the backbone; when combined with nor-
malization, the gains are typically limited to 1%-5%, and
in some cases, APT may not yield further benefits. Given
that models like CATS already achieve strong performance
on these datasets—and that additional normalization of-
ten brings little improvement—APT performs reasonably
within expectations. Moreover, APT is lightweight, adds
negligible training overhead, and frequently enables state-
of-the-art performance. Thus, incorporating APT can be
considered non-intrusive and low-risk.

In summary, APT consistently enhances forecasting per-
formance with minimal overhead. On challenging datasets
such as ETT and Exchange, which exhibit significant dis-
tribution shift and data quality issues, APT achieves SOTA
results with negligible risk of degradation. On more sta-
ble datasets like ECL, Traffic, and Weather, where strong
backbones and normalization strategies already saturate per-
formance, APT remains non-intrusive and yields moderate
gains. Its lightweight design and broad compatibility make
APT a reliable and effective enhancement to modern time
series forecasting pipelines.

C.5 Hyper-parameter Sensitivity Study

In this section, we discuss the impact of hyperparameters on
APT. Given that this section does not have a significant im-
pact compared to ablation studies, we have placed it entirely
in the appendix for the comprehensiveness of experiment.
Potential extra Parameter:

* + Double prototype: Double the number of prototypes
assigned to each dataset in Table 5.

* + Identity embedding: Add identity embedding ID €
REXD to Tt in Equation 8, which is considered optional

in the main text, to explore whether different affine pa-
rameters can be assigned to different channels.

* + “Day in Month”: Add “Day in Month” to the times-
tamp representation in Equation 4. This label is consid-
ered an insignificant timestamp used to test the accep-
tance level of redundancy, as time series rarely generate
associations on this timestamp.

The results of hyper-parameter sensitivity study are shown
in Table 8. Prototype learning is originally introduced to ad-
dress the few-shot challenge at each timestamp. Increasing
the number of prototypes provides more fine-grained tempo-
ral representations but also raises the risk of overfitting. This
hyper-parameter is dataset-dependent and a larger prototype
library tends to improve performance on ETThI.

Identity embedding aims to differentiate affine parame-
ters across channels. However, we omit this component to
maintain APT’s minimal complexity and avoid redundancy
with channel-specific mechanisms already present in some
backbones. Empirically, it only yields noticeable gains on
Exchange and ETThl due to their limited channel counts,
and affine parameters may struggle to capture complex spa-
tial correlations.

Among timestamp embeddings, “Day in Month” proves

less informative than “Day in Week” or “Time in Hour”. The
latter two often reflect external factors influenced by diurnal
cycles and human activity, whereas “Day in Month” intro-
duces noise and redundancy, degrading APT’s global distri-
butional awareness and consistently reducing performance
across all backbones.
Embedding Size is the most important hyper-parameter for
APT intuitively, as it determines the representation space of
timestamps and prototypes. We show the impact of different
embedding sizes on model performance in Table 10.

This parameter has minimal impact on APT’s perfor-
mance in most settings, with sensitivity primarily observed
on Informer and the Exchange dataset. Larger embedding



Mo dule‘ Backbone I Normalization I APT
| CATS | Informer |iTransformer| SparseTSF || RevIN | Dish-TS | SAN | FAN ||
96 1.401M 6.528M 0.081K 0.369M | 85.294K
192 1.401M 6.57TM 0.137K 0.377M | 97.678K
336 1.401M 11.329M 6.651M 0221k || Q014K | ATIBK | o3eom | o.116M || 2O
720 1.402M 6.848M 0.445K 0.422M | 0.166M

Table 9: Parameter count reported for the backbone and normalization on the ETTh1 dataset. M = 1¢5, K = 1¢3

Embedding Size| 10 | 20° | 30 | 50

Metrics | MSE | MSE | MSE | MSE
CATS 0.167 | 0.166 | 0.166 | 0.167

d Informer |0.344|0.331 | 0.360 | 0.327
= | iTransformer | 0.167 | 0.165 | 0.168 | 0.166
SparseTSF |0.170|0.170 | 0.170 | 0.170

— CATS 0.442 1 0.443 | 0.443 | 0.444
ﬁ Informer 1.178 | 1.195 | 1.197 | 1.168
& | iTransformer | 0.486 | 0.478 | 0.480 | 0.489
= SparseTSF | 0.452]0.451|0.453|0.454
& CATS 0.286 ] 0.285|0.325 | 0.275
S| Informer |1.528|1.510|1.356 |1.750
5 | iTransformer | 0.452 | 0.444 | 0.460 | 0.519
é SparseTSF | 0.321|0.316 | 0.340 | 0.348
5 CATS 0.24710.245|0.244 | 0.242
< | Informer |0.286|0.270|0.280 |0.281
$ | iTransformer | 0.253 | 0.252 | 0.255 | 0.253
=3 SparseTSF | 0.266 | 0.266 | 0.268 | 0.268

Table 10: Results of embedding sizes on different datasets
and backbones. L =336, H =336

sizes may lead to overfitting and degrade forecasting accu-
racy. In the main experiments, we recommend a fixed em-
bedding size of 20 across all backbone—normalization com-
binations for simplicity and consistency.

C.6 Parameter Count Comparison

We report the parameter counts of each backbone and nor-
malization on ETTh1 in Table 9. Among the backbones,
SparseTSF is a well-known lightweight linear model. Its
patch mechanism results in even fewer parameters than
DLinear, with a total below 1K. It explains why APT brings
limited improvements when paired with SparseTSF—its
minimal capacity may be insufficient to fully utilize the dy-
namic affine transformations provided by APT.

In contrast, CATS, Informer, and iTransformer each ex-
ceed 1M parameters, which is over three orders of magni-
tude larger than APT. Notably, Informer’s parameter count
is independent of input length due to channel dependency.

For normalization strategies, RevIN introduces affine pa-
rameters twice the number of input channels, yet as shown
in Table 1, these have limited effect on forecasting perfor-
mance. Dish-TS, despite underperforming, requires more
than twice the parameters of APT, while advanced methods

like SAN and FAN are 10-100x larger.

Parameter count directly reflects that APT is a lightweight
plugin. In addition to the performance improvements
brought about by global distribution awareness, it is com-
patible with any backbone and normalization strategy, and
often does not impose any computational burden.

C.7 Additional Ablation Results

Component Ablation: We evaluate APT by removing key
components. For ease of understanding, we have copied the
introduction from the main text below:

* W/O Top-k: Remove Top-k from Equation 6;

* W/O Prototype: Use raw timestamp embeddings with-
out prototype matching;

* W/O de-APT: Remove inverse transformation of APT;

* W/O ~ or 3: Remove scaling or bias in affine transfor-
mation;;

Compared with the main text, more experimental results
are shown in Figure 8. The main conclusions align with
those presented in the main text. Removing the inverse APT
transformation imposes an additional burden on the predic-
tion head, which must learn to reconstruct the original value
space from APT’s transformed representation. In contrast,
de-APT preserves structural symmetry across the pipeline
and alleviates this issue.

Top-k weighting, prototype learning, and affine parame-
ters are all mechanisms related to managing distributional
risk. Due to the limited priors and lack of manual inter-
vention in deep learning, models are susceptible to risks
such as feature oversmoothing, feature collapse, or dimin-
ished reliance on affine parameters when supervising learn-
ing. These factors are highly dataset- and model-dependent,
often introducing randomness into the optimization process.

Top-k and prototype learning are conceptually opposite in
representation: Top-k enforces discriminative assignments
across timestamps, while prototype learning promotes gen-
eralization for underrepresented or highly variable times-
tamp features. In APT, these two components are balanced
to mitigate prediction instability.

In some dataset-backbone combinations, removing the
affine bias term [ occasionally leads to performance gains.
Nevertheless, we retain both affine parameters in the main
experiments, as such fluctuations are irregular and require
extensive manual tuning to validate, which does not align
with APT’s pursuit of lightweight and flexibility.



Cross-Backbone M, A/ = None, Output length H =336

Source — | CATS | Informer |  iTransformer | SparseTSF
Target/ | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE
CATS | 0436 | 0443 | 0439 | 0449 | 0438 | 0444 | 0436 | 0446
Informer | 0817 | 1094 | 0797 | 1195 | 0805 | 1134 | 0804 | 1.158
iTransformer | 0.465 | 0470 | 0472 | 0478 | 0473 | 0478 | 0472 | 0478
SparseTSF | 0438 | 0451 | 0443 | 0455 | 0442 | 0455 | 0438 | 0451
Cross-Normalization N, M = iTransformer, Output length H = 336
Source — | None RevIN Dish-TS SAN FAN
Target| | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE
None | 0.473 | 0.478 | 0.489 | 0496 | 0482 | 0.487 | 0485 | 0492 | 0475 | 0.478
RevIN | 0454 | 0.468 | 0448 | 0.457 | 0452 | 0.460 | 0459 | 0.476 | 0.447 | 0.458
Dish-TS | 0.502 | 0.506 | 0.503 | 0.507 | 0.508 | 0.513 | 0.501 | 0.506 | 0.501 | 0.506
SAN | 0469 | 0479 | 0.461 | 0.486 | 0.469 | 0491 | 0.462 | 0.492 | 0.469 | 0.490
FAN | 0477 | 0487 | 0.476 | 0.486 | 0478 | 0.487 | 0477 | 0487 | 0479 | 0.489
Cross-Output length H = 336, M = iTransformer, A = None
Source — | 96 | 192 | 336 | 720
Target) | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE
96 | 0410 | 0389 | 0411 | 0398 | 0430 | 0416 | 0440 | 0415
192 | 0442 | 0438 | 0441 | 0436 | 0447 | 0445 | 0469 | 0482
336 | 0477 | 0491 | 0504 | 0524 | 0473 | 0478 | 0514 | 0531
720 | 0546 | 0558 | 0568 | 0571 | 0531 | 0538 | 0528 | 0.526

Table 11: Performance report of APT under one epoch of fine-tuning across Settings

C.8 Cross-Setting Fine-Tuning

Since APT’s parameters are independent of forecasting
length, and its distribution shift mitigation is inherently
dataset-driven, we further investigate the flexibility and gen-
eralization of APT under diverse settings. This experiment
evaluates APT’s performance under cross-backbone M
cross-normalization A/, and cross-length H conditions.

We conduct the study on the ETTh1 dataset by transfer-
ring pretrained APT parameters and applying one epoch of
fine-tuning for each new setting. This setup follows observa-
tions from additional experiments, which indicate that zero-
shot performance is limited without fine-tuning.

Cross-Backbone M: We incorporate APT parameters
learned from a source backbone into the target backbone’s
forecasting pipeline and perform one epoch of fine-tuning.
As shown in Table 11, this consistently improves perfor-
mance across all settings, often surpassing the results of
joint training with APT on the target backbone. These results
demonstrate that APT possesses cross-backbone transfer-
ability and can directly enhance arbitrary forecasting back-
bone with pretrained parameters and minimal fine-tuning.

Cross-Normalization N: For iTransformer, we further
test transferring APT parameters across normalization

strategies. By injecting APT parameters learned under a
source normalization into the target normalization pipeline
and fine-tuning for one epoch, we again observe results that
are comparable to the original configuration. While only a
single epoch is used, performance can steadily improve with
additional training, mirroring the behavior observed in the
cross-backbone setting.

Cross-Length H: We also attempt to transfer APT across
different output lengths, but find that this setup generally
fails to reach optimal performance. Fine-tuning in these
cases cannot recover the performance of jointly trained APT.
We attribute this to distribution shift introduced by vary-
ing output lengths, which result in misaligned feature spaces
that undermine the generalizability of a length-specific APT
model.

In summary, when the output length is consistent, APT
demonstrates strong generalization across backbones and
normalization methods. This suggests that APT effec-
tively captures global distributional features intrinsic to the
dataset, independent of model architecture or normalization
strategy. A single epoch of fine-tuning is sufficient to align
module interactions and recover performance, highlighting
the flexibility and generalization of APT across diverse fore-
casting configurations.



C.9 Visualization

t-SNE of Embedding: Figure 9-14 shows the timestamp
and prototype embeddings learned by APT with iTrans-
former on all datasets. In general, timestamp representations
tend to cluster around “Day in Week”, except on ETT1/2,
where human behavioral patterns may introduce additional
coupling. Prototypes, “Day in Week”, and “Time in Day”
are inherently discrete. However, due to the soft nature of
the orthogonality loss Loss,, ., and the influence of exter-
nal factors across datasets, their representations still exhibit
structured patterns in the t-SNE projected space.

Forecasting cases: Figure 6 and Figure 15-17 presents
forecasting examples on the ETTh1, ETTh2 and Exchange
datasets without normalization. In these dataset cases, back-
bone models often exhibit severe distributional shift. For ex-
ample, Informer forecastings generally have a clear mean
offset from the ground truth, while iTransformer outputs re-
veal systematic trend bias.

APT effectively mitigates these issues using only two-
dimensional dynamic affine parameters per instance. As
shown in Figure 6, APT amplifies periodic scales; In Fig-
ure 16, it reduces volatility of pulse-like time series; In Fig-
ures 15 and 17, it corrects deviations in both mean and trend.

These cases collectively demonstrate APT’s mechanism
for handling distribution shift, which adjusts scale and mean
to better align predicted outputs with real-world distribu-
tions, without altering the underlying temporal patterns.
This enables seamless compatibility between APT and a
wide range of backbones.

Temporal distribution: As illustrated in Figure 18 and
19, we visualize the mean, variance, and their ratio of the
raw time series, RevIN-normalized sequences, and APT-
transformed outputs in a 3D distribution space. All datasets
exhibit varying degrees of distributional shift. The raw data
differ significantly in distribution across datasets, with ETT
and Exchange showing the most severe shift, followed by
Traffic and Weather, while ECL remains relatively stable,
which is consistent with our earlier dataset analysis.

RevIN maps all sequences into a standardized space with
zero mean and unit variance. While this prevents the back-
bone from being overwhelmed by distributional complex-
ity, it also eliminates the possibility of leveraging meaning-
ful distributional cues. In contrast, APT strikes a balance
between smoothing and diversity through learnable affine
transformations. The transformed sequences form clusters
in distributional space—not overly uniform, but structured
and distinct—allowing the backbone to perceive informative
distributional patterns.

These 3D visualizations consistently validate that APT
operates on distributional alignment: by introducing global
distributional awareness and controlled feature clustering, it
can effectively mitigate distribution shift across a wide range
of scenarios.

Affine Transformation: Since our affine parameters are
dynamically generated from timestamp information, we can
visualize them corresponding to the entire “Time in Day”

and “Day in Week” timestamps on the test set. Figure 20-
25 presents the learned weekly affine parameters from APT
on all datasets using iTransformer as the backbone. Most
datasets are sampled hourly, except for Exchange (daily) and
Weather (every 10 minutes). Since these parameters are de-
rived from deep networks, their distributions are inherently
difficult to interpret in a fully human-interpretable manner.

Nonetheless, we observe that most datasets exhibit dis-
tinct affine patterns across different “Day in Week”, which
is consistent with the previous t-SNE visualization of em-
beddings. Importantly, the clustered affine parameters re-
main bounded, which is critical for convergence in regres-
sion tasks. This constraint is guided by our Affine Regular-
ization Loss Lossg, which softly encourages the parame-
ters to maintain zero mean and unit variance. However, due
to the soft nature of self-supervision, the loss primarily en-
forces boundedness rather than strict normalization.

Interestingly, datasets like ECL, Exchange, and Traffic
exhibit axis-symmetric patterns, which we speculate result
from the scale parameter v overfitting to redundant distribu-
tional signals, with the bias S compensating to restore bal-
ance.

D Discussion

D.1 Pattern, Distribution & Distribution Shift

We aim to establish a shared understanding of the core com-
ponents of time series data—pattern and distribution. Pat-
terns refer to the structural dynamics of the series, such as
combinations of trend, seasonality, and residuals. Forecast-
ing backbones are primarily designed to capture these pat-
terns, as they reflect both short- and long-term dependencies
critical to accurate prediction.

Distributions, on the other hand, describe the state space
of the series. A classic perspective views distributions
through statistical properties such as mean and variance, of-
ten under the assumption of Gaussianity. Since distributions
are shaped by external conditions, they tend to drift over
time, posing a fundamental challenge. When distributional
shift are entangled with pattern dynamics, the value ranges
and variability observed by the backbone vary significantly.
This forces the model to allocate capacity toward fitting dis-
tributional noise, often at the cost of learning meaningful
patterns.

One of the dominant strategies to address distribution shift
is normalization. By mapping sequences into a common sta-
tistical space (e.g., zero mean and unit variance), normaliza-
tion enables the backbone to focus solely on pattern learn-
ing. A subsequent denormalization step restores the output
to its original scale. This design simplifies the learning prob-
lem and enhances performance. Recent works such as Dish-
TS, SAN, and FAN extend the simple RevIN framework by
focusing on the learnable components of distributions like
modeling asymmetric statistics between history and future,
or going beyond mean-variance assumptions.



D.2 Local statistical property and global
temporal semantics

While statistical normalization with local mean and variance
is widely adopted, it has inherent limitations. First, time se-
ries often contain noise and missing values, making such
statistics unreliable. Second, these statistics are computed
over limited contexts: RevIN relies on full-length history,
while SAN uses patch-level features, yet neither guarantees
alignment with the actual distribution of future samples. Fur-
thermore, relying solely on Gaussian assumptions (mean &
variance) may fail to capture more comprehensive distribu-
tion features.

To overcome these limitations, we argue for leveraging
global, non-statistical information. APT adopts timestamps
as external priors to mitigate local errors. Timestamps are
easy to obtain and strongly correlated with real-world tem-
poral semantics such as traffic spikes during rush hours,
high TV ratings at night, or increased foot traffic in shop-
ping malls on weekends. As a result, they implicitly encode
global information that statistical normalization alone can-
not capture.

D.3 Reasons for affine transformation

APT utilizes a network to apply dynamic affine parameters
to time series with different timestamp combinations. Affine
transformations have long been integrated with normaliza-
tion. For instance, in Transformers to align intermediate rep-
resentations between layers or blocks. More significantly,
AdalN in style transfer showed that affine parameters can
serve as carriers of cross-modal information, which demon-
strates that such parameters can effectively encode external
priors to assist a primary task.

Inspired by this, APT uses affine modulation to inject
timestamp-driven global distributional awareness into the
forecasting pipeline. Unlike prior works such as GLAFF or
Informer’s temporal embedding, which encode timestamp
features as full-sequence tensors with the same shape as the
time series and use them either jointly or as replacements for
the sequence itself, APT follows a minimal design. For ex-
ample, GLAFF introduces more parameters than some back-
bones like CATS, and suffers from the uniqueness of times-
tamp combinations, which it difficult to extract generalizable
patterns, similar to few-shot learning challenges.

APT addresses this by producing only two parame-
ters per instance and applying them to modulate the se-
quence through affine transformation. This lightweight de-
sign avoids redundancy, minimizes overhead, and, with the
help of prototype learning, ensures robust and scalable
global timestamp representation.

D.4 Theoretical support for APT

Generally speaking, the work related to conditional affine
parameters in computer vision and natural language pro-
cessing does not require theoretical explanations because the
ideas are very simple. Introducing external variables such
as timestamps is equivalent to introducing conditional in-
formation into the modeling of time series. According to
the principles of Bayesian inference and information gain,

conditioning on informative variables reduces uncertainty,
thereby improving generalization and forecasting accuracy.

While the MSE loss used in point forecasting does not
strictly follow a Bayesian formulation, we provide the fol-
lowing conceptual argument to clarify APT’s benefit:

In time series forecasting, the goal is to estimate the con-
ditional probability of the future series Y given the historical
sequence X, denoted as P(Y | X). By treating timestamp
ts as an informative variable, we shift to estimating:

P(ts | Y, X), P(Y | X)
P(ts | X)

This conditioning provides additional benefit to forecasting.
According to the conditional entropy relation:

HY | X,15) < HY | X),

P(Y | X,ts) =

the inclusion of ts always reduces or maintains the uncer-
tainty in Y, leading to improved forecasting performance.
We believe that this conditional information can actually
be replaced by any task-related information, such as text or
images, which is consistent with the broader idea of multi-
modal and multivariate time series forecasting.

E Limitation and Future Work

Limitation: APT relies on manually chosen timestamps
such as ”Time in Day” or "Day in Week” with distribu-
tional similarity as shown in Figure 2 to obtain information
gain. However, in the appendix experiments, irrelevant la-
bels “Day in Month” not only fail to provide performance
gains but may even degrade forecasting accuracy.

APT requires pretraining with additional losses. More-
over, since APT relies on self-supervised clustering and re-
quires parameter alignment with the forecasting task, im-
proper hyperparameter configurations may hinder its ability
to enhance the performance of the backbone model, posing
challenges for practical deployment.

Future Work: APT introduces a new paradigm in time se-
ries forecasting by addressing the limitations of local statis-
tical normalization and mitigating distribution shift. Future
directions include integrating online distribution shift detec-
tion, incorporating richer global temporal semantics, and ex-
ploring more expressive parametric transformations.

Moreover, we hope APT inspires multimodal research in
time series. Timestamps are sparse yet semantically rich sig-
nals, often requiring large models like GLAFF for effective
representation before our work. However, each time series
sample typically receives only limited external context. Un-
like vision or language data, 1-D time series usually cannot
accommodate unique but semantically rich external infor-
mation, often resulting in overfitting of multimodal tasks of
time series. APT leverages dynamic affine transformations
to compress such redundant, noisy inputs into compact para-
metric forms, which serves as an information attenuator that
aligns external modalities with the limited expressiveness of
time series. We consider that this technology is expected to
help better integrate auxiliary signals and enhances perfor-
mance in cross-modal forecasting tasks.



Methods

CATS

Informer

iTransformer

SparseTSF

Affine

| +APT

+APT

+APT

+APT

Metrics

| MAE

MSE

| MAE

MSE

| MAE

MSE

MAE

MSE

MAE

MSE |

MAE

MSE | MAE

MSE |

MAE

MSE

ECL

Dish-ts

96
192
336
720

0.235
0.257
0.265
0.298

0.140
0.161
0.168
0.203

0.234
0.249
0.264
0.302

0.138
0.154
0.166
0.205

0.383
0.425
0.446
0.449

0.308
0.361
0.398
0.411

0.374
0.406
0.413
0.438

0.281
0.330
0.331
0.384

0.236
0.262
0.280
0.302

0.138
0.160
0.174
0.205

0.240
0.253
0.268
0.301

0.139
0.153
0.165
0.203

0.245
0.258
0.269
0.303

0.150
0.162
0.171
0.207

0.245
0.254
0.268
0.301

0.150
0.159
0.170
0.206

RevIN | Nones

96
192
336
720

0.232
0.250
0.260
0.291

0.137
0.154
0.165
0.203

0.233
0.249
0.260
0.295

0.138
0.154
0.165
0.207

0.308
0.318
0.307
0.416

0.211
0.222
0.209
0.369

0.289
0.314
0.306
0.393

0.189
0.217
0.206
0.322

0.230
0.252
0.264
0.289

0.135
0.160
0.169
0.194

0.233
0.250
0.261
0.292

0.137
0.154
0.164
0.194

0.244
0.252
0.266
0.297

0.150
0.159
0.172
0.212

0.243
0.251
0.265
0.297

0.149
0.158
0.171
0.212

96
192
336
720

0.246
0.259
0.276
0.307

0.145
0.160
0.175
0.211

0.242
0.259
0.273
0.307

0.144
0.160
0.172
0.212

0.348
0.388
0.338
0.440

0.258
0.309
0.249
0.403

0.336
0.335
0.379
0.434

0.249
0.246
0.296
0.395

0.236
0.262
0.270
0.294

0.136
0.163
0.168
0.199

0.236
0.253
0.262
0.294

0.136
0.153
0.160
0.194

0.243
0.254
0.271
0.303

0.146
0.159
0.174
0.207

0.242
0.254
0.269
0.303

0.145
0.159
0.172
0.209

SAN

96
192
336
720

0.243
0.266
0.281
0.316

0.141
0.165
0.179
0.217

0.241
0.267
0.280
0.315

0.140
0.166
0.178
0.216

0.290
0.301
0.352
0.454

0.186
0.199
0.259
0.420

0.264
0.296
0.313
0.422

0.160
0.196
0.208
0.362

0.233
0.248
0.262
0.291

0.134
0.148
0.161
0.192

0.236
0.250
0.264
0.296

0.136
0.151
0.161
0.193

0.240
0.255
0.270
0.319

0.139
0.154
0.167
0.226

0.239
0.253
0.269
0.305

0.139
0.153
0.166
0.205

FAN

96
192
336
720

0.238
0.251
0.267
0.305

0.140
0.154
0.168
0.206

0.234
0.249
0.267
0.300

0.137
0.152
0.167
0.205

0.243
0.251
0.266
0.303

0.144
0.152
0.163
0.200

0.237
0.252
0.271
0.296

0.141
0.153
0.171
0.199

0.248
0.259
0.278
0.311

0.147
0.159
0.175
0.209

0.240
0.254
0.271
0.309

0.141
0.156
0.170
0.210

0.236
0.250
0.266
0.301

0.138
0.153
0.167
0.204

0.233
0.248
0.265
0.300

0.136
0.152
0.165
0.203

ETTh1l

Dish-ts

96
192
336
720

0416
0.451
0.468
0.541

0.404
0.460
0.490
0.591

0.400
0.422
0.436
0.484

0.382
0.420
0.443
0.481

0.865
0.898
0.819
0.982

1.119
1.263
1.153
1.487

0.669
0.736
0.797
0.930

0.896
1.018
1.195
1.427

0.450
0.479
0.497
0.568

0.430
0.481
0.512
0.591

0.410
0.441
0.473
0.528

0.389
0.436
0.478
0.526

0.392
0.424
0.446
0.496

0.374
0.420
0.457
0.493

0.390
0.422
0.438
0.497

0.374
0.420
0.451
0.497

RevIN | Nones

96
192
336
720

0.411
0.432
0.447
0.483

0.396
0.437
0.456
0.503

0.400
0.421
0.434
0.469

0.382
0.420
0.439
0.469

0.567
0.592
0.582
0.649

0.640
0.702
0.681
0.838

0.441
0.587
0.579
0.640

0.442
0.694
0.679
0.812

0.420
0.463
0.462
0.546

0.410
0.480
0.471
0.581

0.410
0.430
0.448
0.477

0.399
0.432
0.457
0.475

0.391
0.414
0.440
0.471

0.374
0.414
0.445
0.473

0.390
0415
0.439
0.463

0.374
0.415
0.444
0.462

96
192
336
720

0.419
0.469
0.474
0.536

0.411
0.485
0.486
0.558

0.411
0.435
0.458
0.505

0.398
0.437
0.470
0.517

0.755
0.746
0.878
0.811

0.962
0.965
1.157
1.164

0.575
0.747
0.797
0.765

0.626
0.997
1.125
1.041

0.446
0.466
0.512
0.567

0.433
0.467
0.554
0.596

0.444
0.454
0.508
0.561

0.436
0.454
0.513
0.577

0.415
0.442
0.454
0.556

0.396
0.440
0.465
0.609

0.413
0.439
0.466
0.504

0.402
0.443
0.484
0.516

SAN

96
192
336
720

0.414
0.435
0.446
0.510

0.411
0.451
0.467
0.560

0.414
0.434
0.446
0.493

0.414
0.450
0.466
0.523

0.506
0.507
0.545
0.611

0.564
0.569
0.625
0.697

0.481
0.491
0.539
0.602

0.535
0.536
0.640
0.686

0.422
0.447
0.460
0.535

0.415
0.457
0.472
0.564

0.419
0.447
0.462
0.486

0.420
0.467
0.492
0.501

0.498
0.491
0.499
0.528

0.566
0.563
0.562
0.564

0.426
0.449
0.458
0.525

0.434
0.472
0.488
0.560

FAN

96
192
336
720

0.422
0.453
0.483
0.554

0.407
0.453
0.496
0.571

0.418
0.450
0.476
0.549

0.401
0.451
0.487
0.574

0.451
0.494
0.525
0.607

0.432
0.499
0.550
0.652

0.439
0.482
0.524
0.577

0.432
0.497
0.549
0.638

0.424
0.460
0.492
0.574

0.406
0.461
0.511
0.611

0.420
0.452
0.479
0.556

0.404
0.451
0.489
0.576

0.426
0.472
0.474
0.567

0.408
0.468
0.489
0.623

0.433
0.460
0.478
0.549

0414
0.464
0.500
0.573

ETTh2

Dish-ts

96
192
336
720

0.381
0.462
0.501
0.671

0.331
0.446
0.507
0.850

0.365
0.427
0.484
0.607

0.315
0.413
0.477
0.739

1.569
1.322
1.324
1.518

3.349
2.577
2.595
3.013

0.869
1.168
1.281
1.456

1.251
2.340
2.540
2.945

0.602
0.684
0.641
0.816

0.685
0.859
0.764
1.146

0.379
0.473
0.519
0.602

0.327
0.466
0.540
0.697

0.394
0.451
0.500
0.622

0.349
0.438
0.515
0.760

0.398
0.451
0.490
0.598

0.353
0.437
0.497
0.705

RevIN | Nones

96
192
336
720

0.368
0.417
0.443
0.472

0.316
0.384
0.415
0.455

0.354
0.405
0.435
0.472

0.306
0.383
0.417
0.455

0.516
0.556
0.540
0.646

0.534
0.650
0.604
0.845

0.476
0.524
0.487
0.530

0.484
0.574
0.492
0.575

0.382
0.440
0.451
0.484

0.334
0.431
0.440
0.480

0.364
0.413
0.443
0.470

0.311
0.383
0.424
0.456

0.370
0.413
0.438
0.486

0.323
0.385
0.413
0.477

0.370
0.413
0.443
0.486

0.321
0.385
0.411
0.764

96
192
336
720

0.368
0.449
0.486
0.599

0.316
0414
0.465
0.667

0.371
0.418
0.458
0.530

0.312
0.378
0.436
0.549

1.389
1.183
1.348
1.366

3.795
2.626
3.385
3.238

0.666
0.803
0.943
0.770

0.954
1.367
1.834
1.117

0414
0.508
0.531
0.696

0.365
0.519
0.551
0.914

0.408
0.449
0.499
0.584

0.364
0.429
0.507
0.687

0.470
0.497
0.677
0.878

0.472
0.512
0.896
1.851

0.394
0.487
0.580
0.673

0.353
0.519
0.686
0.889

SAN

96
192
336
720

0.376
0.425
0.455
0.497

0.325
0.391
0.426
0.480

0.369
0.422
0.454
0.488

0.316
0.390
0.435
0.477

0.516
0.633
0.698
1.024

0.541
0.734
0.836
1.646

0.390
0.440
0.462
0.497

0.344
0.428
0.455
0.523

0.374
0.424
0.447
0.507

0.325
0.401
0.427
0.520

0.288
0.428
0.453
0.488

0.328
0.403
0.434
0.476

0.462
0.534
0.564
0.676

0.424
0.570
0.618
0.863

0.401
0.459
0.521
0.560

0.348
0.444
0.540
0.579

FAN

96
192
336
720

0.380
0.431
0.483
0.615

0.328
0.402
0.486
0.732

0.379
0.434
0.469
0.597

0.326
0.408
0.460
0.686

0.446
0.521
0.540
0.751

0.400
0.533
0.547
1.014

0.411
0.460
0.470
0.616

0.370
0.445
0.448
0.734

0.387
0.442
0.488
0.649

0.334
0.419
0.487
0.806

0.384
0.439
0.483
0.626

0.333
0.418
0.478
0.759

0.400
0.445
0.471
0.585

0.354
0.420
0.456
0.638

0.392
0.434
0.470
0.594

0.341
0.409
0.457
0.685

Table 12:

Part I of the detailed results of the main experiment



Methods

CATS

Informer

iTransformer

SparseTSF

Affine

| +APT

+APT

+APT

| +APT

Metrics

| MAE

MSE

| MAE

MSE

| MAE

MSE

MAE

MSE | MAE

MSE | MAE

MSE

| MAE

MSE

| MAE

MSE

Exchange

96
192
336
720

0.335
0.435
0.514
1.184

0.233
0.371
0.466
2.483

0.246
0.319
0.410
0.686

0.105
0.181
0.285
0.695

0.896
1.016
1.058
1.015

1.255
1.719
1.855
1.732

0.879
0.961
0.976
0.863

1.215
1.364
1.510
1.258

0.443
0.535
0.661
0.981

0.374
0.493
0.704
1.560

0.283
0.462
0.502
0.956

0.152
0.351
0.444
1.450

0.265
0.327
0.448
0.664

0.124
0.184
0.341
0.757

0.256
0.324
0.432
0.662

0.114
0.186
0.316
0.754

RevIN | Nones

96
192
336
720

0.213
0.299
0.437
0.789

0.090
0.166
0.352
0.997

0.199
0.299
0.423
0.774

0.079
0.170
0.331
0.943

0.456
0.500
0.677
0.734

0.354
0.402
0.708
0.885

0.344
0.480
0.686
0.565

0.196
0.386
0.711
0.546

0.235
0.350
0.493
0.852

0.103
0.221
0.423
1.124

0.213
0.328
0.459
0.787

0.089
0.197
0.378
1.001

0.235
0.344
0.499
0.844

0.105
0.221
0.434
1.155

0.230
0.330
0.460
0.732

0.101
0.206
0.393
0.846

Dish-ts

96
192
336
720

0.270
0.512
0.491
0.974

0.114
0.428
0.388
2.165

0.256
0.353
0.517
0.847

0.105
0.211
0.406
1.150

0.425
0.646
0.940
1.709

0.308
0.735
1.428
5.947

0.423
0.648
0.736
1.008

0.307
0.726
0.831
2.150

0.293
0.386
0.552
0.806

0.155
0.265
0.508
1.054

0.263
0.362
0.536
0.745

0.111
0.234
0.457
0.776

0.301
0.417
0.642
0.800

0.155
0.325
0.632
1.012

0.284
0.420
0.537
0.768

0.128
0.298
0.469
1.009

SAN

96
192
336
720

0.242
0.338
0.500
0.853

0.112
0.212
0.474
1.287

0.202
0.296
0.414
0.748

0.078
0.163
0.314
0.935

0.254
0.396
0.484
0.696

0.119
0.300
0.394
0.827

0.212
0.298
0.420
0.685

0.081
0.167
0.321
0.782

0.245
0.396
0.515
0.827

0.118
0.307
0.473
1.098

0.204
0.298
0.471
0.857

0.080
0.167
0.396
1.149

0.219
0.312
0.419
0.720

0.087
0.169
0.305
0.839

0.212
0.302
0.422
0.694

0.083
0.171
0.324
0.844

FAN

96
192
336
720

0.301
0.381
0.518
0.764

0.152
0.248
0.452
0.980

0.261
0.371
0.531
0.765

0.130
0.238
0.463
0.997

0.330
0.487
0.631
0.801

0.194
0.420
0.683
1.068

0.308
0.462
0.626
0.738

0.183
0.372
0.686
0.873

0.278
0412
0.594
0.768

0.133
0.285
0.574
1.018

0.241
0.394
0.548
0.759

0.104
0.264
0.494
0.931

0.247
0.372
0.564
0.710

0.109
0.251
0.553
0.859

0.247
0.349
0.540
0.713

0.109
0.213
0.493
0.861

Traffic

96
192
336
720

0.269
0.284
0.290
0.310

0.509
0.549
0.563
0.594

0.271
0.281
0.292
0.302

0.503
0.510
0.542
0.565

0.432
0.392
0.401
0.474

0.832
0.772
0.787
0.928

0.397
0.386
0.397
0.427

0.764
0.759
0.780
0.816

0.550
0.560
0.597
0.668

0.876
0.909
1.002
1.156

0.429
0.416
0.432
0.436

0.624
0.617
1.178
0.903

0.287
0.292
0.298
0.316

0.423
0.435
0.447
0.469

0.287
0.292
0.296
0.311

0.423
0.435
0.447
0.468

RevIN | Nones

96
192
336
720

0.263
0.283
0.287
0.305

0.382
0.418
0.431
0.454

0.264
0.274
0.277
0.306

0.386
0.407
0.414
0.458

0.395
0.489
0.430
0.513

0.735
0.941
0.820
1.000

0.360
0.374
0.427
0.416

0.689
0.713
0.814
0.794

0.270
0.281
0.291
0.311

0.375
0.403
0.420
0.449

0.276
0.287
0.294
0.315

0.380
0.401
0.422
0.456

0.285
0.290
0.296
0.311

0.424
0.437
0.448
0.470

0.285
0.290
0.295
0.310

0.424
0.436
0.449
0.470

Dish-ts

96
192
336
720

0.279
0.281
0.300
0.312

0.411
0.421
0.450
0.472

0.263
0.272
0.280
0.297

0.387
0.408
0.424
0.450

0.385
0.388
0.472
0.536

0.710
0.732
0.925
1.077

0.357
0.373
0.436
0.447

0.683
0.702
0.835
0.825

0.288
0.295
0.308
0.330

0.402
0.413
0.434
0.467

0.293
0.299
0.313
0.332

0.403
0.414
0.440
0.465

0.302
0.308
0.314
0.331

0.440
0.454
0.462
0.488

0.299
0.304
0.310
0.329

0.436
0.448
0.459
0.484

SAN

96
192
336
720

0.275
0.286
0.294
0.312

0.395
0.421
0.440
0.472

0.281
0.290
0.287
0.306

0.405
0.427
0.439
0.476

0.355
0.403
0.397
0.521

0.623
0.715
0.727
0.947

0.339
0.377
0.373
0.485

0.608
0.673
0.683
0.899

0.278
0.288
0.296
0.313

0.389
0.416
0.436
0.469

0.281
0.291
0.300
0.315

0.390
0418
0.440
0.477

0.420
0.361
0.414
0.433

0.661
0.557
0.670
0.716

0.292
0.346
0.409
0.404

0.419
0.535
0.659
0.662

FAN

96
192
336
720

0.290
0.306
0.315
0.352

0.414
0.439
0.455
0.507

0.288
0.291
0.297
0.330

0.412
0.421
0.435
0.484

0.290
0.304
0.317
0.350

0.418
0.440
0.459
0.510

0.281
0.292
0.302
0.329

0.413
0.432
0.448
0.486

0.313
0.334
0.340
0.375

0.429
0.453
0.468
0.520

0.304
0.310
0.324
0.360

0.422
0.435
0.455
0.504

0.283
0.293
0.300
0.330

0.395
0.419
0.433
0.481

0.277
0.291
0.302
0.324

0.393
0.417
0.437
0.478

Weather

96
192
336
720

0.203
0.251
0.294
0.374

0.147
0.195
0.244
0.329

0.195
0.244
0.287
0.348

0.145
0.188
0.245
0.315

0.243
0.342
0.519
0.482

0.184
0.327
0.576
0.516

0.218
0.312
0.315
0.401

0.164
0.255
0.270
0.381

0.224
0.310
0.314
0.361

0.163
0.267
0.261
0.333

0.220
0.266
0.293
0.360

0.163
0.209
0.252
0.330

0.258
0.282
0.320
0.367

0.192
0.227
0.270
0.329

0.253
0.280
0.313
0.348

0.190
0.226
0.266
0.359

RevIN | Nones

96
192
336
720

0.193
0.233
0.274
0.331

0.145
0.184
0.236
0.316

0.192
0.234
0.273
0.336

0.144
0.189
0.238
0.325

0.214
0.283
0.311
0.366

0.175
0.258
0.307
0.375

0.213
0.257
0.290
0.335

0.167
0.214
0.263
0.329

0.206
0.245
0.284
0.333

0.158
0.200
0.251
0.323

0.208
0.248
0.284
0.335

0.158
0.201
0.250
0.323

0.235
0.265
0.294
0.339

0.185
0.224
0.267
0.333

0.235
0.263
0.293
0.338

0.185
0.223
0.267
0.333

Dish-ts

96
192
336
720

0.216
0.255
0.290
0.349

0.151
0.191
0.240
0.317

0.212
0.250
0.291
0.352

0.150
0.191
0.242
0.321

0.231
0.310
0.334
0.388

0.188
0.277
0.323
0.394

0.228
0.285
0.300
0.369

0.187
0.266
0.272
0.381

0.238
0.255
0.309
0.382

0.190
0.199
0.264
0.378

0.220
0.261
0.300
0.358

0.162
0.206
0.256
0.336

0.234
0.281
0.320
0.370

0.168
0.210
0.257
0.325

0.239
0.274
0.315
0.366

0.169
0.210
0.257
0.325

SAN

96
192
336
720

0.209
0.258
0.294
0.347

0.148
0.195
0.242
0.316

0.215
0.258
0.293
0.352

0.151
0.196
0.242
0.319

0.228
0.253
0.304
0.359

0.181
0.214
0.282
0.366

0.210
0.257
0.299
0.339

0.161
0.217
0.265
0.336

0.213
0.253
0.281
0.336

0.154
0.198
0.245
0.314

0.211
0.254
0.291
0.350

0.153
0.195
0.247
0.347

0.213
0.258
0.294
0.349

0.150
0.195
0.243
0.316

0.213
0.256
0.297
0.343

0.151
0.194
0.247
0.317

FAN

96
192
336
720

0.208
0.261
0.298
0.356

0.153
0.199
0.249
0.325

0.213
0.260
0.303
0.357

0.157
0.205
0.252
0.321

0.229
0.257
0.295
0.359

0.172
0.207
0.257
0.348

0.207
0.258
0.293
0.364

0.157
0.208
0.249
0.364

0.218
0.264
0.307
0.362

0.158
0.203
0.258
0.326

0.209
0.253
0.294
0.347

0.154
0.198
0.248
0.318

0.208
0.252
0.296
0.346

0.152
0.197
0.247
0.317

0.214
0.251
0.296
0.353

0.154
0.198
0.247
0.320

Table 13

: Part II of the detailed results of the main experiment



O aeT [0 wio Topk O wio Prototype

O wio de-APT O woy 0O wosp
ETTh1
0.48 0.49 0.9 — 1.4
1.3
| | 0.85 |
0.46 0.47 12
0.8 _
0.44 | { 0.45 1.1
I HHL i nlln]
0.42 0.43 0.7 0.9
MAE MSE
CATS MAE Informer MSE
0.6 0.6 0.45 — 0.47
0.55 | 1 055
05 | 0.44 | { 0.46
il H il | HH |
0.4 VAE |_| MSE 0.45 0.43 1 |_| 0.45
iTransformer MAE SparseTSF MSE
ExchangeRate
0.48 0.4 1.15 2
0.46 | { 0.37 11 | 118
- 1.05 |
0.44 | { 0.34 ] {16
042 | H H 0.31 0.95 —||_|H |—| HI"H | 14
0.4 = 0.28 0.9 il 1.2
MAE CATS MSE MAE Informer MSE
0.58 —— 0.54 0.45 0.33
0.52 _—l 0.32
0.5 0.44 0.31
0.53 |
0.48 0.43 0.3
0.46 |—| |—| 0.29
0.48 0.44 0.42 0.28
MAE MSE MAES TSE MSE
iTransformer parse
Weather
0.31 0.252 0.4 __
0.38
| _ 0.38 |
0.3 { 0.249 036 |
029 | . { 0.34
0.34 |
{ 0.246 |
= (] {1 ] o2 o) T d.,
0.27 SE 0.243 0.3 [ 0.26
MAE CATS MAE MSE
0.34 0.275 0.33 Informer 0.28
0.32 | 1 o265 032 | { 0.275
03 | { 027
{ 0.255
o (LI ol 1 H | HHH o
0.26 L 245 0.3 | 0.26
MAE MSE MAE MSE
iTransformer SparseTSF

Figure 8: The ablation study results of APT components in ETTh1, ExchangeRate and Weather, L = 336, H = 336



t-SNE of [TiD + DiW] Embeddin:

40

20

=]

lime Index (Mon 0.

t-SNE of Prototype Embeddin

60 %
% o
40 o %
° ° K
20 °
° o ©o
0 °
(X °
e o
-20
e ©
-40 00g

-90 -60 -30 O

30

O Y
5 @ 38 &
Prototype Index

@

-30

t-SNE of [TiD] Embedding

rxJ
° oo
°
. °
[ ]
(X ]
° °
o
® o o
°
[ ] [ )
e o :
-15 0 15 30 45 60

N
=]

o iy y
o o

)

Time Index (0:00 — 23:00) Index

t-SNE of [DiW]] Embedding

160 L4

-160 °

-50 0 50 100 150 200

Figure 9: Visualization of APT’s embeddings on ECL dataset and iTransformer

lime Index (Mon 0:00

t-SNE of Prototype Embeddin:

75 ° o
o o
50 o e [ ]
°
°
25 ° [ ] [ )
°
°
0% e 0o @
o °
25 °
e
50 000 o
-50 -25 0 25 50

O Y
5 @ S8 &
Prototype Index

o

30

t-SNE of [TiD] Embeddin:
[ ]

N
S

) - y
o o

o

Time Index (0:00 — 23:00) Index

t-SNE of [DiW]] Embeddin
°
-184
[ ]
-188
b °
-192 °
-196 o
-200
[J
-8 -12 6 0 6

Figure 10: Visualization of APT’s embeddings on ETTh1 dataset and iTransformer

t-SNE of [TiD + DiW] Embeddin

40

20

t-:?ONE of [TiD + DiW] Embeddin

% |
® 4
&

-40 -20 0 20 40 60

0

lime Index (Mon 0:00 — Sun 23:00)

t-SNE of Prototype Embeddin:

60 ¢ ©
o. 0. °
°
°
4@ e o
« ° 2
°
0 b4 ° °
°
_30 °
o [ )
LAY
60, @
o®
-40 -20 0 20 40

[ R
s @ S &
Prototype Index

o

60

30

t-SNE of [TiD] Embeddin

-90 -60 -30 0 30 60

N
=3

o

o

o
Time Index (0:00 — 23:00) Index

)

t-SNE of [DiW]] Embedding
[ ]
50
[ ]
0
-50
]
-100 °
L]
-150
[ J [J
-80 -40 0 40 80

Figure 11: Visualization of APT’s embeddings on ETTh2 dataset and iTransformer

40
°

0
°

-40

-80

-120 °
-50 -25 0 25 50

t-SNE of Prototype Embeddin
°

4.0

35

3.0 %
@

T
258

208
=
152

1.00

0.0

60

40

20

-160 -150 -140 -130 -120 -110

t-SNE of [DiW]] Embedding
[ ]

o B N w » ] o
Time Index (Mon — Sun)

Figure 12: Visualization of APT’s embeddings on Exchange dataset and iTransformer

Y
L

¥®
§

-40 -20 0 20 40

lime Index (Mon 0:00 — Sun 23:00)

t-SNE of Prototype Embeddin:
°

°o e
°
60
° ° .
30 o®
e o ®
o_® ° °®
o o L ° ®
°
-30 ¢ o ® °
° o °
-60 L]
-80 40 0 40 80 120

s o S &
Prototype Index

o

60

30

0

-30

t-SNE of [TiD] Embedding
[ ]

-40 -20 0 20 40

N
=3

) -y -
o a

)

Time Index (0:00 — 23:00) Index

t

-SNE of [DiW]] Embedding

° [ ]
40
20
Og ® °
-20
[ ]
-40 °
15 30 45 60 75

Figure 13: Visualization of APT’s embeddings on Traffic dataset and iTransformer

N

o N w
Time Index (Mon — Sun)

-

- N WA oo
Time Index (Mon — Sun)

o

- N Wwooh G oo
Time Index (Mon — Sun)

)

- LY w > o o
Time Index (Mon — Sun)

)



t-SNE of [TiD + DiW] Embeddinq § t-SNE of Prototype Embeddin t-SNE of [TiD] Embedding » t-SNE of [DiW]] Embedding 6
000g 40 oo o s 8 o w3 °
50 ’ c ® o0 %e?® ® 1205 30 55
. 800 5 0 oo e °°° 30 4 @ l'o..:.-o S, 2 o '®
25 1 L) 3 %90 s Hoog 0 ° al
600 © ® ) 25¢ ® ‘.. .;t'. ‘? L] c
3 0 ° ° 80 2
ol ’ ‘ 3 ® o 000 ® Bog 0 f".‘\.‘.‘ % &0 g -3 3=
0w Sy ® ° 158 e "® omoe % 60 3 3
25/ = ° ° B 4 0 W™ Peo o < 60 ° 22
x ° 100 o % oo .:g w0 3 £
2008 40 oo o 0“" Q%" E g e 1E
-50 £ e o 5 -8 ° (] 20 =
© ® o % 'r s £ °
%0 30 0 30 60 ° £ 50 25 0 25 50 75 ° % 4 o 4 8 °F 80 -40 ©0 40 80 °
Figure 14: Visualization of APT’s embeddings on Weather dataset and iTransformer
—— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT
-1.2 05
-1.4
-1.0
-16
-15
-1.8
0 100 200 300 0 100 200 300 0 100 200 300
CATS Informer iTransformer SparseTSF

Figure 15: Visualization of forecasting results for different models on the ETTh1 dataset without normalization strategy

—— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT
0.4
0.0

0.1
05 0.2

0.0
10 0.0

-0.1 _
15 0.2
0 100 200 300 0 100 200 300 0 100 200 300
CATS Informer iTransformer SparseTSF

Figure 16: Visualization of forecasting results for another channel on the ETTh2 dataset without normalization strategy for
different models

—— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT —— Ground Truth —— APT —— W/O APT
1.0

1.0 05 0.8
0.8 0.5 0.6

0.0
06 0.0 o
-05 '
-0.5
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
CATS Informer iTransformer SparseTSF

Figure 17: Visualization of forecasting results for different models on the ExchangeRate dataset without normalization strategy



BN Raw data

EEE Raw data N Raw data
. APT . APT - APT
BN Norm EEE Norm

BN Norm

Percentage (%)

Figure 18: 3D visualization of temporal distribution and ratio of forecasting pipeline at different stages on ELC, ETThl &

BN Raw data EEE Raw data EEN Raw data
. APT . APT . APT
BN Norm BN Norm EEE Norm

Percentage (%)

Percentage (%)

Figure 19: 3D visualization of temporal distribution and ratio of forecasting pipeline at different stages on Exchange, Traffic &

Weather.

1.0
0.5
0.0
-0.5
-1.0

——— Affine Parameter y
_1.5] — Affine Parameter 8

Wed Thu Fri Sat Sun

Mon Tue

Figure 20: Visualization of affine parameters at different timestamps over a week on the ELC datasets

R

—— Affine Parameter 8
Sun

-0.3
Mon Tue Wed Thu

Figure 21: Visualization of affine parameters at different timestamps over a week on the ETTh1 datasets




0.4

0.2

0.0

03

0.2

0.1

0.5

0.0

—— Affine Parameter y
—— Affine Parameter 8

Mon Tue Wed Thu Fri Sat Sun

Figure 22: Visualization of affine parameters at different timestamps over a week on the ETTh2 datasets

—— Affine Parameter y
—— Affine Parameter 8

Mon Tue Wed Thu Fri Sat Sun

Figure 23: Visualization of affine parameters at different timestamps over a week on the Exchange datasets

—— Affine Parameter y
—— Affine Parameter 8

Mon Tue Wed Thu Fri Sat Sun

Figure 24: Visualization of affine parameters at different timestamps over a week on the Traffic datasets

S Tl il

r‘rup‘Hl[‘("\’ | mm‘ I\MM\’!‘ W‘\ ‘ \|mr i

—— Affine Parameter y
—— Affine Parameter 8

Mon Tue Wed Thu Fri Sat Sun

Figure 25: Visualization of affine parameters at different timestamps over a week on the Weather datasets



