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Traffic forecasting, which aims to predict traffic conditions based on historical observations, has been an
enduring research topic and is widely recognized as an essential component of intelligent transportation. Recent
proposals on Spatial-Temporal Graph Neural Networks (STGNNs) have made significant progress by combining
sequential models with graph convolution networks. However, due to high complexity issues, STGNNs only focus
on short-term traffic forecasting (e.g., 1-h ahead), while ignoring more practical long-term forecasting. In this
paper, we make the first attempt to explore long-term traffic forecasting (e.g., 1-day ahead). To this end, we first
reveal its unique challenges in exploiting multi-scale representations. Then, we propose a novel Hierarchical U-
net TransFormer (HUTFormer) to address the issues of long-term traffic forecasting. HUTFormer consists of a
hierarchical encoder and decoder to jointly generate and utilize multi-scale representations of traffic data.
Specifically, for the encoder, we propose window self-attention and segment merging to extract multi-scale
representations from long-term traffic data. For the decoder, we design a cross-scale attention mechanism to
effectively incorporate multi-scale representations. In addition, HUTFormer employs an efficient input embed-
ding strategy to address the complexity issues. Extensive experiments on four traffic datasets show that the
proposed HUTFormer significantly outperforms state-of-the-art traffic forecasting and long time series fore-
casting baselines.

sensors deployed on a road network. A critical property of traffic data is
that there exist strong correlations between time series owing to the
connection of road networks. To make accurate traffic forecasting, state-
of-the-art proposals (Jin et al., 2022; Li et al., 2018; Wu et al., 2019)
usually adopt Spatial-Temporal Graph Neural Networks (STGNNs),

1. Introduction

Traffic forecasting aims at predicting future traffic conditions (e.g.,

traffic speed or flow) based on historical traffic conditions observed by
sensors. With the development of Intelligent Transportation Systems
(ITS), traffic forecasting fuels a wide range of services related to traffic
scheduling, public safety, etc. (Chu et al., 2019, 2024; Guo et al., 2024;
Jin et al., 2023; Li et al., 2025; Liu et al., 2023; Lv et al., 2023; Xu et al.,
2023). For example, predicting long-term traffic changes (e.g., 1-day) is
valuable for people to plan their route in advance to avoid possible
traffic congestion.

In general, traffic data' is presented in the form of multiple time
series, where each time series records traffic conditions observed by

which model the correlations between time series based on Graph
Convolution Networks (GCNs) (Defferrard et al., 2016; Kipf and Welling,
2017; Li et al., 2018). However, graph convolution brings significant
improvements in performance and 50 complexity at the same time.
Computational complexity usually increases linearly or quadratically
with the length and number of time series (Shao et al., 2022c). There-
fore, it is difficult for STGNNS to scale to long-term historical traffic data,
let alone predict long-term future traffic conditions. In fact, most
existing works focus on short-term traffic prediction, e.g., predicting

* Corresponding author. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.

E-mail address: wangfei@ict.ac.cn (F. Wang).

1 For the sake of brevity, in this paper, we use ‘traffic condition data’ and ‘traffic data’ interchangeably.

https://doi.org/10.1016/j.commtr.2025.100218

Received 10 February 2025; Received in revised form 29 April 2025; Accepted 15 May 2025

Available online xxxx

2772-4247/© 2025 The Authors. Published by Elsevier Ltd on behalf of Tsinghua University Press. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/licenses/by/4.0/
mailto:wangfei@ict.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commtr.2025.100218&domain=pdf
www.sciencedirect.com/science/journal/27724247
http://www.journals.elsevier.com/communications-in-transportation-research
https://doi.org/10.1016/j.commtr.2025.100218
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Z. Shao et al.

Communications in Transportation Research 5 (2025) 100218

Nomenclature

T The length of history traffic data
T¢ The length of future traffic data
N The number of time series

C The number of feature channels in a traffic sensor
X History data of shape RT*N*¢

hY% Future data of shape RT>N*¢

Xt History data of sensor i

Y! Future data of sensor i

Y Prediction data of sensor i

L The segment size

The number of segments, T=P x L

The hidden dimension

Parameter matrix of the fully connected layer

Parameter of the bias of the fully connected layer

Spatial embeddings of shape RNV*%

Temporal embeddings

The number of time slots of a day

W The number of days in a week
Embeddings of each segment after segment embedding
Embeddings of each segment after spatial-temporal
positional encoding

H Hidden states

HmHo AT
2 =
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future 12 time steps (1 h in commonly used datasets). Such an inability
to make long-term traffic forecasting limits the practicality of these
models.

In this study, we focus on long-term traffic forecasting, e.g., pre-
dicting a future day. Except for the correlations between time series, the
long-term traffic forecasting task has its own uniqueness. In the
following, we discuss them in detail to motivate model design. Examples
of traffic data is shown in Fig. 12. On the one hand, when observing from
a global perspective, traffic data usually exhibit regular changes, e.g.,
daily periodicity. On the other hand, local details are crucial for traffic
forecasting. For example, we must capture the rapidly decreasing traffic
changes when daily traffic congestion occurs. To capture different pat-
terns, exploiting multi-scale representations of traffic data is the key
challenge of accurate long-term traffic forecasting. Specifically, smaller-
scale and larger-scale representations are extracted based on smaller and
larger receptive fields, respectively. The former is usually semantically
weak but fine-grained, which facilitates the prediction of local details, e.
g., rapid changes during traffic congestion. In contrast, the latter is
coarse-grained but semantically strong, which is helpful in predicting
global changes, e.g., daily periodicity. An illustration is shown in Fig. 1b.
The prediction based on large-scale features captures daily periodicity
but misses local details, which can be fixed by further incorporating
small-scale features.

However, it is a challenging task to exploit multi-scale representa-
tions of traffic data. We discuss it from two aspects: Generating and
utilizing multi-scale representations. On the one hand, most existing
models cannot generate multi-scale representations of traffic data. State-
of-the-art models for long time series forecasting (Zhou et al., 2021)
mainly adopt Transformers to capture the long-term dependencies based
on self-attention mechanisms (Vaswani et al., 2017). However, standard
self-attention naturally has a global receptive field and thus can only
generate representations on a fixed scale. On the other hand, utilizing
multi-scale representations for traffic forecasting is also a challenging
task, as it usually requires a specific decoder. For example, in computer
vision tasks like object detection and semantic segmentation, re-
searchers designed decoders such as FPN (Lin et al., 2017) and U-Net
(Ronneberger et al.,, 2015) to utilize the multi-scale representations
extracted by the pre-trained encoder (He et al., 2016). These architec-
tures usually require pixel alignment of input and output images.
However, the historical and future sequences in traffic forecasting
problems are not the same sequences, i.e., not aligned, making existing
approaches (Lin et al., 2017; Ronneberger et al., 2015) inapplicable.

Based on the above discussion, we summarize three challenges that
the desired long-term traffic forecasting model should address. First, it
must efficiently model the correlations between multiple long-term time
series. Second, it should generate multi-scale representations of traffic

2 Fig. 1b is the future part of Fig. 1a

data by an encoder. Third, it should include a decoder for traffic fore-
casting tasks to effectively utilize the multi-scale representations
generated by the encoder.

To address the above challenges, we propose a novel Hierarchica U-
Net TransFormer (named HUTFormer). As shown in Fig. 2, HUTFormer
is a two-stage model consisting of a hierarchical encoder and a hierar-
chical decoder, forming an inverted U-shaped structure. To address the
efficiency problem, HUTFormer designs an efficient input embedding
strategy, which employs segment embedding and spatial-temporal po-
sitional encoding to significantly reduce the complexity of modeling
multiple long-term time series in both temporal and spatial dimensions.
To generate multi-scale representations, the HUTFormer encoder pro-
poses a window Transformer layer to limit the receptive field, and then
designs segment merging as a pooling layer to extract larger-scale fea-
tures. Thus, lower layers of the encoder focus on smaller-scale features,
while higher layers generate larger-scale features. Then, HUTFormer
makes an intermediate prediction based on the top-level representa-
tions. To utilize multi-scale representations, the HUTFormer decoder
proposes a cross-scale attention mechanism to address the misalignment
issue, which retrieves information for each segment of the intermediate
prediction from multi-scale representations, thus enabling the fine-
tuning of the intermediate prediction. By exploiting the multi-scale
representations of traffic data, HUTFormer is capable of making accu-
rate long-term traffic forecasting. The main contributions of this paper
are summarized as follows:

e To our best knowledge, this is the first attempt to study long-term
traffic forecasting. We reveal its unique challenges in exploiting
multi-scale representations of traffic data, and propose a novel Hi-
erarchical U-Net TransFormer (HUTFormer) to address them.

e We propose window self-attention and cross-scale attention mecha-
nisms to generate and utilize multi-scale representations effectively.
In addition, to address complexity issues, we design an input
embedding strategy that includes segment embedding and spatial-
temporal positional encoding.

e Extensive experiments on four traffic datasets show that the pro-
posed HUTFormer significantly outperforms state-of-the-art traffic
forecasting and long-sequence time series forecasting baselines, and
effectively exploits the multi-scale representations of traffic data.

2. Related work
2.1. Traffic forecasting

Previous traffic forecasting studies usually fall into two categories, i.
e., knowledge-driven (e.g., queuing theory) and early data-driven
models (Belhadi et al., 2020; Cho et al., 2014; Kumar and Vanajakshi,
2015; Liu et al., 2019, 2021a; Sutskever et al., 2014; Wang et al., 2020b;
Yu and Koltun, 2016). However, these methods usually ignore the
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Fig. 1. Examples of long-term traffic forecasting.
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Fig. 2. Overview of the proposed HUTFormer. Left: The hierarchical encoder. It generates multi-scale features for traffic data based on window Transformer layer
and segment merging, and makes an intermediate prediction. Right: The hierarchical decoder. It fine-tunes the intermediate prediction by incorporating multi-scale
features based on cross-scale Transformer layer. In addition, segment embedding and spatial-temporal positional encoding are proposed to address complexity issues.

correlation between time series and the high non-linearity of time series
(Shao et al., 2022d), which severely limits the effectiveness of these
methods. With the development of deep learning (Huang et al., 2025;
Shao et al., 2025b; Wang et al., 2023a), Spatial-temporal Graph Neural
Networks (STGNNs) were proposed recently (Li et al., 2018) to model
the complex spatial-temporal correlations in traffic data. Specifically,
STGNNs combine Graph Neural Networks (GNNs) (Defferrard et al.,
2016; Kipf and Welling, 2017; Shao et al., 2022a) and sequential models
(e.g., CNN (Yu and Koltun, 2016) or RNN (Cho et al., 2014)), to model
the complex spatial-temporal correlation in traffic data. For example,
DCRNN (Li et al., 2018), ST-MetaNet (Pan et al., 2019), AGCRN (Bai
et al., 2020), etc. (Li et al., 2023; Shang et al., 2021; Yu et al., 2018), are
RNN-based methods, which combine GNN with recurrent neural net-
works. Graph WaveNet (Wu et al., 2019), MTGNN (Wu et al., 2020),
STGCN (Yu et al., 2018), and StemGNN (Cao et al., 2020) are CNN-based
methods (Han et al., 2021), which usually combines GNN with the
Temporal Convolution Network (TCN (Yu and Koltun, 2016)). More-
over, techniques such as attention mechanisms and spectral theories are
also widely employed in STGNNs (Guo et al., 2019, 2022; Li et al., 2024;
Park et al., 2020; Shao et al., 2025c; Wang et al., 2020a; Yu et al., 2024;
Zheng et al., 2020).

Although STGNNs have achieved significant progress, their
complexity is high. Specifically, their complexity usually increases lin-
early or quadratically with the length and the number of time series
(Shao et al., 2022c), since they need to deal with both temporal and
spatial dependency at every step. Thus, most of them focus on short-term
traffic forecasting based on short-term history data, e.g., predicting
future 1-h traffic conditions based on 1-h historical data (Bogaerts et al.,

2020; Li et al., 2018; Shao et al., 2022¢, 2022d; Wu et al., 2019, 2020). A
recent work STEP (Shao et al., 2022c) attempts to address this issue
based on the time series pre-training model. It significantly enhances
STGNN's ability to exploit long-term historical data. However, STEP
requires a downstream STGNN as the backbone, which still focuses on
short-term traffic forecasting.

Although STGNN-based traffic forecasting has made significant
progress, these models only focus on short-term traffic forecasting, and
cannot handle long-term traffic forecasting. On the one hand, due to the
high complexity, most of them can not handle long-term history data, let
alone predict long-term future traffic conditions. On the other hand,
apart from efficiency issues, long-term traffic forecasting also has its
unique challenges, which require exploiting multi-scale representations
of traffic data to capture the complex long-term traffic dynamics.

2.2. Long-sequence time series forecasting

Recently, long-sequence time series forecasting has received much
attention (Liu et al., 2022; Shao et al., 2025a; Wu et al., 2021; Zeng et al.,
2023; Zhou et al., 2021, 2022). They aim to make long-term future
predictions by modeling long-term historical sequences. For example,
Informer (Zhou et al., 2021) proposes a ProbSparse self-attention
mechanism to replace the standard self-attention, which enhances the
predictive ability of the standard Transformer in the long-sequence
forecasting problem. Autoformer (Wu et al., 2021) designs an efficient
Auto-Correlation mechanism to conduct dependencies discovery and
information aggregation at the series level. DLinear (Zeng et al., 2023)
rethinks Transformer-based techniques and proposes a simple linear
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model based on decomposition to achieve better accuracy. Recently,
many advanced Transformer-based models have been proposed, such as
PatchTST (Nie et al., 2023), Crossformer (Zhang and Yan, 2023), Sca-
leformer (Shabani et al., 2023), and DSformer (Yu et al., 2023).

Although these models have made considerable progress in long-
term time series forecasting, they are not designed for traffic data,
which significantly affects their effectiveness in traffic forecasting
problems. We discuss it from two aspects. First of all, there are strong
correlations between multiple time series in traffic data, which is an
important bottleneck in traffic forecasting (Li et al., 2018). However,
long-sequence time series forecasting models usually do not pay atten-
tion to such spatial correlations (Cirstea et al., 2022; Liu et al., 2022;
Shabani et al., 2023; Wu et al., 2021; Zhou et al., 2021, 2022), or are not
efficient enough (Zhang and Yan, 2023). Second, as discussed in Section
1, long-term traffic forecasting requires exploiting multi-scale repre-
sentations of traffic data to capture the complex long-term traffic dy-
namics. However, long-sequence forecasting models usually rely on the
self-attention mechanism and its variants, which can not explicitly
generate multi-scale features (Nie et al., 2023; Wu et al., 2021; Zhou
et al., 2021).

3. Preliminaries

In this section, we define the notions of traffic data and traffic
forecasting task.

Definition 1. Traffic data X € R™*V*C¢ denotes the observation from
all sensors on the traffic network, where T is the number of time steps, N
is the number of traffic sensors, and C is the number of features collected
by sensors. We additionally denote the data from the sensor i as
Xt e RT*C,

Definition 2. Traffic forecasting aims to predict the traffic values ) €
RY*N<C of the Ty nearest future time steps based on the given historical
traffic data X € R™N*C from the past Ty time steps. In this study, we
focus on long-term traffic forecasting, e.g., forecasting for a day in the
future.

4. Model architecture
4.1. Overview

As illustrated in Fig. 2, HUTFormer is based on a hierarchical U-Net
structure to generate and utilize multi-scale representations of traffic
data. In this subsection, we intuitively discuss each component of
HUTFormer and its two-stage training strategy.

First, we discuss the hierarchical encoder. The window Transformer
layer is the basis for generating multi-scale representations, which cal-
culates self-attention within a small window to limit the receptive field.
Then, segment merging acts as a pooling layer, reducing the sequence
length to produce larger-scale representations. By combining them,
lower layers can focus on smaller-scale features while higher layers
focus on larger-scale features, thus successfully generating multi-scale
features. Then, an intermediate prediction is made based on the top-
layer representations. However, considering that the top-layer features
are semantically strong but coarse-grained, the intermediate prediction
may fail to capture rapidly changing local details, e.g., the red line in
Fig. 1b.

To address the above problem, the hierarchical decoder aims to fine-
tune the intermediate prediction by incorporating multi-scale repre-
sentations. U-Net (Cao et al., 2022; Ronneberger et al., 2015) is a pop-
ular structure for utilizing multi-scale representations, especially in
computer vision tasks (e.g., semantic segmentation). In these tasks, the
pixels of the input and target images are aligned, i.e., models operate on
the same image. However, for traffic forecasting tasks, the input and
output sequences are not the same sequence, i.e., not aligned. Thus, the
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representations generated by the encoder and the decoder cannot be
directly superimposed as regular U-Net structures (Cao et al., 2022;
Ronneberger et al., 2015) do for computer vision tasks. To this end, we
design a cross-scale Transformer layer, which uses the representations
from the decoder as queries and the multi-scale features from the
encoder as keys and values to retrieve information. Such a top-down
pathway and lateral connects help to combine the multi-scale repre-
sentations, thus enhancing the prediction accuracy.

In addition, HUTFormer addresses complexity issues based on an
efficient input embedding strategy, which consists of segment embed-
ding and spatial-temporal positional encoding. On the one hand,
segment embedding reduces complexity from the temporal dimension
by using time series segments as basic input tokens. This simple opera-
tion has significant benefits in both reducing the length of the input
sequence and providing more robust semantics (Shao et al., 2022c). On
the other hand, spatial-temporal positional encoding is designed to
replace the standard positional encoding (Dosovitskiy et al., 2021;
Vaswani et al., 2017) in Transformer. More importantly, it efficiently
models the correlations among time series from the perspective of
solving the indistinguishability of samples (Deng et al., 2021; Shao et al.,
2022b; Wang et al., 2023b), avoiding the high complexity of conducting
graph convolution (Li et al., 2018; Wu et al., 2019) in the spatial
dimension.

Finally, we propose the training strategy: a two-stage strategy. The
first stage aims to train the hierarchical encoder based on the Mean
Absolute Error (MAE) between the intermediate prediction and ground
truth. In the second stage, we only train the decoder, while the param-
eters of the encoder are fixed to act as the multi-scale feature extractor.
The reason for adopting the two-stage strategy is that traffic forecasting
tasks are different from tasks that employ an end-to-end strategy (e.g.,
semantic segmentation (Cao et al., 2022; Ronneberger et al., 2015) and
object detection (Lin et al., 2017) in computer vision). Specifically, in
computer vision tasks, pre-trained vision models (e.g., pre-trained
ResNet (He et al., 2016)) usually serve as the backbone to extract
multi-scale features (Lin et al., 2017). However, there is no pre-trained
model for time series that can extract multi-scale features. Therefore,
optimizing the feature extractor (i.e., the encoder) and downstream
networks (i.e., the decoder) in an end-to-end fashion may be insufficient.
The experimental results in Section 5.5 also verify this hypothesis. Next,
we introduce each component in detail.

4.2. Input embedding

Segment embedding. Most previous works usually use single data
points as the basic input units. However, isolated points of time series
usually give less semantics (Shao et al., 2022¢) and are more easily
affected by noise. Therefore, HUTFormer adopts segment embedding, i.
e., dividing the input sequence into several segments to get the input
tokens. Specifically, given the time series X' € R™C from sensor i,
HUTFormer divides it into P non-overlapping segments of length L, i.e.,
T = P*L. We denote the jth segment as X]‘: € RC. Then, we conduct the
input embedding layer based on these segments:

S;=WX/ +b €h)

where S]‘: € R? is the embedding of segments j of the time series from

sensor i, and d is the hidden dimension. W € R¥*®®) and b € R? are
learnable parameters shared by all segments.

In summary, applying segment embedding brings two benefits. First,
it provides more robust semantics. Second, it significantly reduces the
sequence length to reduce computational complexity.

Spatial-temporal positional encoding. In this study, we propose to
replace the standard positional encoding in Transformer-based networks
(Dosovitskiy et al., 2021; Vaswani et al., 2017) with Spatial-temporal
Positional Encoding (ST-PE). Specifically, given the segment
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embedding S; € R? of segments j from time series i, ST-PE conduct po-

sitional encoding on the spatial and temporal dimensions
simultaneously:

i i|| i || prip || poiw

Uf*Lmear(S.fHE‘T.f HT/ ) 2

On the spatial dimension, we define the spatial positional embed-
dings E € R¥*% | where N is the number of time series (i.e., sensors), and
d; is the hidden dimension. On the temporal dimension, we define two
semantic positional embeddings, T™ € R™*% and TPV ¢ RVW*%,
where N is the number of time slots of a day (determined by the sensor's
sampling frequency) and Ny = 7 is the number of days in a week. The
temporal embeddings are thus shared among slots for the same time of
the day and the same day of the week. Semantic temporal positional
embeddings are helpful since traffic systems usually reflect the period-
icity of human society. In addition, kindly note that all other baseline
models (Li et al., 2018; Liu et al., 2022; Shao et al., 2022d; Wu et al.,
2019, 2021; Zhou et al., 2022) also use such temporal features, so there
is no unfairness. Linear(-) is a linear layer to reduce the hidden dimen-
sion. E, TTiD, and T are trainable parameters.

Embedding E is vital for reducing the complexity of modeling the
spatial correlations between time series. This is because attaching
spatial embeddings plays a similar role to GCN in terms of solving the
indistinguishability of samples (Shao et al., 2022b), but with two pri-
mary advantages. On the one hand, it is more efficient than GCNs, which
usually have O(N?) complexity. On the other hand, it does not generate
many additional network parameters than approaches based on
variable-specific modeling (Bai et al., 2020; Cirstea et al., 2022).

4.3. Hierarchical encoder

Window Transformer layer. Standard Transformer layers (Vaswani
et al., 2017) are designed based on the multi-head self-attention mech-
anism. As shown in Fig. 3a, it computes the attention among all input
tokens. Therefore, each layer of the Transformer layer has an infinite
receptive field, and many works (Liu et al., 2022; Wu et al., 2021; Zhou
etal., 2021, 2022) try to capture long-term dependencies based on such
a feature.

However, the infinite receptive field makes the standard transformer
layers unable to generate multi-scale features (Liu et al., 2021b).
Inspired by recent development in computer vision (Liu et al., 2021b),
we apply the window self-attention in HUTFormer to extract the hier-
archical multi-scale features. An example of window self-attention with
windows size 2 is shown in Fig. 3b. Window self-attention forces
calculating attention inside non-overlapping windows, thereby limiting
the size of the receptive field. By replacing multi-head self-attention in
standard Transformer layers (Vaswani et al., 2017) with the Window
Multi-head Self-Attention (W-MSA), we present the window Trans-
former layer:

H" =W — MSA(LN(H")) +H"

- - 3
H*" = MLP(LN(H")) + H" @

where LN(-) is the layer normalization, and MLP(.) is the multi-layer

(a) Standard self-attention
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Fig. 4. An illustration of segment merging.

RPXd

perceptron. H™ € RP*¢ and H"* € R"*¢ are the input and output se-
quences. P is the sequence length, and d is the hidden dimension. By
limiting the receptive field size, the window transformer layer is the
basis for extracting multi-scale features.

Segment merging. To generate hierarchical multi-scale represen-
tations, we adopt segment merging, which reduces the number of tokens
and increases the number of hidden dimensions as the network gets
deeper. As illustrated in Fig. 4, segment merging divides the token series
into non-overlapping groups of size 2, and concatenates the features
within each group.

By combining the segment merging and window transformer layer,
we get the basic block of the hierarchical encoder (i.e., the blue block in

Fig. 2). Assuming (H'),. € RP " js the representation of series i after

block I (I > 1) of the encoder, the (I + 1)th block is computed as

1
enc‘) (r> (4)
= WindowTransformer((H'),,.)

enc

= SegmentMerging ((H')

NS . . . -
where (H') ;C € RP" " s the representation of time series i after block

I + 1 of the encoder. P! = %l is the number of tokens after (I + 1)th
layer, and d'*! = 2d"*! is the hidden dimension.

Prediction layer. Assuming there are S blocks in the encoder,
HUTFormer makes an intermediate prediction with a linear layer:

pS

Y., = Linear(|| (H))’ ) ®)

e =1 enc

where P’ is the number of tokens after the Sth block. Y' € R7*C is the
prediction of time series i. Considering the prediction from all N time

series, Y € RTN*C e compute the Mean Absolute Error (MAE) as
regression loss to train the hierarchical encoder:

C
PODBIRAERA ©)

ﬁenc = g

4.4. Hierarchical decoder

Cross-scale Transformer layer. The hierarchical decoder aims to
effectively utilize the multi-scale features, to fine-tune each segment of
the intermediate prediction. However, as discussed in Section 4.1, the
history and future sequence in traffic forecasting tasks are not aligned,
making the feature sequences extracted by the encoder and the decoder
cannot be directly superimposed. Therefore, we design a cross-scale
attention mechanism to select and incorporate multi-scale features.
Different from self-attention, cross-scale attention utilizes the

I S S

=P

.

(b) Window self-attention

Fig. 3. Standard self-attention v. s. Window self-attention.
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representations of the decoder as queries to retrieve the multi-scale
features from the encoder. For brevity, we denote He, € R” ene X dene g
the representation from the encoder and Hgee € RPéec*de a5 the corre-
sponding representation from the decoder. Then, the Cross-scale
Attention (CA) is computed as

Heee(H,,)"
CA(Henca Hdec) = SOﬂmaX(L /—mC))Henc
ddec (7)
H, = Linear(Hep.)

The Linear(-) layer is used to transform the hidden dimension from
denc t0 dgec- By replacing the multi-head self-attention with Multi-head
Cross-scale Attention (MCA), we present the cross-scale Transformer
layer as

Hi, = MCA(LN(H, HE) + H, ®
HiZ = MUP(LN(HE,) + HE,
where H%_ is the multi-scale feature from the encoder, and HL. is the

out

input feature from the decoder. Hgg

Transformer layer.

is the output of the cross-scale

Prediction layer. Assuming (H})jec € Ri is the representation of

the decoder's last block (i.e., the Sth block) for jth segment of ith time
series, HUTFormer makes the final prediction for each segment with a
shared linear layer:

(Y))gec = Linear(H)), ) ©)
where (SA{';)
Similar to the encoder, we consider the prediction from all Pgqe. segments

~d
(Pgec x L =Ty of all N time series, Y € R7*¥*C, and compute the MAE
loss to train the hierarchical decoder:

dec € REC is the final prediction of segment j of time series i.

~

C
k=

1 ~dec
Lo = — U Y 10
e TfNC; ley,jk Vil 10)

Kindly note that the parameters of the encoder are fixed during this
stage to serve as a pre-training model for extracting robust hierarchical
multi-scale representations of traffic data.

5. Experiments

In this section, we conduct extensive experiments on four real-world
traffic datasets to validate the effectiveness of HUTFormer for long-term
traffic forecasting. First, we introduce the experimental settings,
including datasets, baselines, and implementation details. Then, we
compare HUTFormer with other state-of-the-art traffic forecasting
baselines and long-sequence time series forecasting baselines. Further-
more, we conduct more experiments to evaluate the impact of important
components and strategies, including the effectiveness of the hierar-
chical U-Net structure, the input embedding strategy, and the two-stage
training strategy.

5.1. Experimental setting

Datasets. We conduct experiments on four commonly used traffic
datasets, including two traffic speed datasets (METR-LA and PEMS-BAY)
and two traffic flow datasets (PEMS04 and PEMSO08). The statistical
information is summarized in Table 1.

e METR-LA is a traffic speed dataset collected from loop-detectors
located on the LA County road network (Jagadish et al., 2014). It
contains data of 207 selected sensors over a period of 4 months from
Mar to Jun in 2012 (Li et al.,, 2018). The traffic information is
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Table 1
Statistics of datasets.

Type Dataset # Sample # Sensor Sample rate

Speed METR-LA 34,272 207 5 min
PEMS-BAY 52,116 325 5 min

Flow PEMS04 16,992 307 5 min
PEMS08 17,856 170 5 min

recorded at the rate of every 5 min, and the total number of time

slices is 34,272.
e PEMS-BAY is a traffic speed dataset collected from California
Transportation Agencies (CalTrans) Performance Measurement Sys-
tem (PeMS) (Chen et al., 2001). It contains data of 325 sensors in the
Bay Area over a period of 6 months from Jan 1st, 2017 to May 31st,
2017 (Li et al., 2018). The traffic information is recorded at the rate
of every 5 min, and the total number of time slices is 52,116.
PEMSO04 is a traffic flow dataset also collected from CalTrans PeMS. It
contains data of 307 sensors over a period of 2 months from Jan 1st,
2018 to Feb 28th, 2018 (Guo et al., 2019). The traffic information is
recorded at the rate of every 5 min, and the total number of time
slices is 16,992.
e PEMSO08 is a public traffic flow dataset collected from CalTrans
PeMS. Specifically, PEMS08 contains data of 170 sensors in San
Bernardino over a period of 2 months from July 1st, 2018 to Aug
31st, 2018 (Guo et al., 2019). The traffic information is recorded at
the rate of every 5 min, and the total number of time slices is 17,856.
ETTh1, ETTm1, and Weather are non-traffic time series datasets used
to verify the generalization of the proposed HUTFormer. Due to
space limitations, we omit their details. Interested readers can refer
to (Zhou et al., 2021).

Spatial attributes—especially road-network topology—are indis-
pensable to traffic forecasting tasks. The following describes in detail the
spatial information used by each traffic dataset.’

e METR-LA and PEMS-BAY: These datasets comprise 207 and 325
sensor nodes, respectively. Their geographic distributions are illus-
trated in Fig. 5. Following prior work (Li et al., 2018), the spatial
adjacency matrix A is computed with a thresholded Gaussian kernel
(Shuman et al., 2013):

dist(v;, v; 2
Ay — exp( - %), dist(v;,v;) < k

1D

0, otherwise

where dist(v;, vj) denotes the road-network distance between nodes v;
and vj, ¢ is the standard deviation of all pairwise distances, and « is
the distance threshold.

PEMS04 and PEMSO08: These datasets contain 307 and 170 nodes,
respectively. Because the original releases (Guo et al., 2019; Yu et al.,
2018) only contain the distance between sensors without the raw
latitude-longitude coordinates, we omit their spatial visualizations.
Consistent with the previous studies (Guo et al., 2019; Yu et al.,
2018), the spatial adjacency matrix A is defined as

1,
-

dist(vi,vj) < 3.5 mile

otherwise a2

Baselines. On the one hand, we select six traffic forecasting baselines,

3 ETTh1, ETTm1, and Weather are not traffic time-series datasets; they are
non-spatiotemporal benchmarks used to evaluate the generalization capability
of HUTFormer, and are therefore omitted here.
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(a) METR-LA
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(b) PEMS-BAY

Fig. 5. Spatial typologies of METR-LA and PEMS-BAY datasets.

including:

e DCRNN (Li et al., 2018) is one of the earliest works for STGNN-based
traffic forecasting, which replaces the fully connected layer in GRU
(Cho et al., 2014) by diffusion convolutional layer to form a Diffusion
Convolutional Gated Recurrent Unit.

e Graph WaveNet (Wu et al., 2019) is a traffic forecasting model,

which stacks gated temporal convolutional layer and GCN layer by

layer to jointly capture the spatial and temporal dependencies.

MTGNN (Wu et al., 2020) is a traffic forecasting model, which ex-

tends Graph WaveNet through the mix-hop propagation layer in the

spatial module, the dilated inception layer in the temporal module,
and a delicate graph learning layer.

STID (Shao et al., 2022b) is a simple but effective baseline for traffic

forecasting, which identifies the indistinguishability of samples in

both spatial and temporal dimensions as a key bottleneck, and ad-
dresses the indistinguishability by attaching spatial and temporal
identities.

e STEP (Shao et al., 2022c¢) is a traffic forecasting model, which en-

hances existing STGNNs with the help of a time series pre-training

model. It significantly extends the length of historical data.

D?STGNN (Shao et al., 2022d) is a state-of-the-art traffic forecasting

model, which identifies the diffusion process and inherent process in

traffic data, and further decouples them for better modeling.

On the other hand, we also select six long-sequence forecasting
baselines, including:

e HI (Cui et al., 2021) is a basic baseline for long-sequence time series
forecasting problems, which directly takes the most recent time steps
in the input as output.

DLinear (Zeng et al., 2023) is a simple but effective long-sequence
time series forecasting model, which decomposes the time series
into a trend and a remainder series and employs two one-layer linear
networks to model these two series.

Informer (Zhou et al., 2021) is a model for long-sequence time series
forecasting, which designs a ProbSparse self-attention mechanism
and distilling operation to handle the challenges of the quadratic
complexity in the standard Transformer. Also, it carefully designs a
generative decoder to alleviate the limitation of standard
encoder-decoder architecture.

e Autoformer (Wu et al., 2021) is a model for long-sequence time series
forecasting, which is proposed as a decomposition architecture by
embedding the series decomposition block as an inner operator.
Besides, it designs an efficient Auto-Correlation mechanism to
conduct dependencies discovery and information aggregation at the
series level.

FEDformer (Zhou et al., 2022) is a frequency-enhance Transformer
for long-sequence time series forecasting. It proposes an attention
mechanism with low-rank approximation in frequency and a mixture
of experts decomposition to control the distribution shifting.

e Pyraformer (Liu et al., 2022) is a pyramidal attention-based model
for long-sequence time series forecasting. Pyramidal attention can
effectively describe short and long temporal dependencies.
Crossformer (Zhang and Yan, 2023) is a Transformer-based model
utilizing cross-dimension dependency for multivariate time-series
(MTS) forecasting.

PatchTST (Nie et al., 2023) proposes an effective design of
Transformer-based models for time series forecasting tasks by
introducing two key components: Patching and channel-independent
structure.

Metrics. In this study, we evaluate the performances of all baselines
by Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) metrics. First, the MAE metric reflects the absolute prediction
error, but is affected by the units of the dataset. For example, traffic
speed datasets usually take values between 0 and 70 km/h, while traffic
flow datasets usually take values between zero and hundreds. Thus, we
also adopt MAPE, which can eliminate the impact of data units and re-
flects the relative error, helping to understand the accuracy more
intuitively.

Implementation. For all datasets, we use historical T, = 288 time
steps (i.e., 1 day) to predict future Ty = 288 time steps. For HUTFormer,
we set the segment length L to 12, and the number of segments P = 24 (L
x P = 288). We set the window size to 3. We set the hidden dimension of
temporal embedding T™™ to 8, while others d to 32. The depth of
HUTFormer is set to 4. For baselines, we adopt the default settings.
Moreover, as discussed before, STGNNs can not directly handle the long-
term traffic forecasting task due to their high complexity. Therefore, we
first apply the segment embedding to reduce the length of input tokens
for them.” On the one hand, all baseline models are based on their
official open-source code, with only modifications to the model input
(introducing segment embedding technology), and we ensure that both
HUTFormer and the baseline models use the same hyperparameters
(segment size and stride size), thereby maintaining fairness in model
structure. On the other hand, all models are trained using a unified and
scalable pipeline (Shao et al., 2025c¢), ensuring fairness in the training
process.

Optimization settings. For both encoding and decoding stages, we
apply the optimization settings in Table 2. Specifically, we adopt Adam
(Kingma and Ba, 2015) as our optimizer, and set learning rate and
weight decay to 0.0005 and 0.0001, respectively. The batch size is set to
64. In addition, we use a learning rate scheduler, MultiStepLR, which
adjusts the learning rate at epochs 1, 40, 80, and 120 with gamma 0.5.
Moreover, the gradient clip is set to 5. All the experiments in Section 5
are running on an Intel(R) Xeon(R) Gold 5217 CPU @ 3.00 GHz, 128G
RAM computing server, equipped with RTX 3090 graphics cards.

4 Methods implemented with segment embeddings are marked with *.
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Table 2

Optimization settings.
Config Value
Optimizer Adam
Learning rate 0.0005
Batch size 64
Weight decay 0.0001
Learning rate schedule MultiStepLR
Milestones [1, 40, 80, 120]
Gamma 0.5
Gradient clip 5

5.2. Main results

Settings. We follow the dataset division in previous works. Specif-
ically, for traffic speed datasets (METR-LA and PEMS-BAY), we use 70%,
10%, and 20% of the data for training, validating, and testing, respec-
tively. For traffic flow datasets (PEMS04 and PEMS08), we use 60%,
20%, and 20% of data for training, validating, and testing, respectively.
We compare the performance at 1, 4, 8, 12, 16, and 24 h (horizon 12, 48,
96, 144, 192, and 288) of forecasting on the MAE and MAPE metrics.

Results. The results of traffic speed and flow forecasting are shown
in Tables 3 and 4, respectively. In general, HUTFormer consistently
outperforms all baselines, indicating its effectiveness. Notably, Cross-
former (Zhang and Yan, 2023) suffers from out-of-memory issues due to
its high complexity and is therefore ignored in Tables 3 and 4.

Long-sequence forecasting models do not perform well on traffic
forecasting tasks. We conjecture that the main reason is that these
models do not fit the characteristics of traffic data. First, there exist
strong correlations between the time series of traffic data. For example,
due to the constraint of road networks, time series from adjacent sensors
or from similar geographical functional areas may be more similar (Pan
et al., 2019). Understanding and exploiting the correlations between
time series is essential for traffic forecasting. However, long-sequence

Table 3
Long-term traffic forecasting on traffic speed datasets METR-LA and PEMS-BAY.
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forecasting models are usually not concerned with such spatial de-
pendencies. Second, as discussed in Section 1, the long-term traffic
forecasting task requires exploiting multi-scale representations to cap-
ture the complex dynamics of traffic data. However, most long-term
sequence forecasting models mainly focus on capturing global de-
pendencies based on self-attention mechanisms. For example, Informer
(Zhou et al., 2021) optimizes the efficiency of the original self-attention
mechanism through the ProbSparse mechanism. Autoformer (Wu et al.,
2021) conducts the dependencies discovery at the series level. They can
not generate and utilize multi-scale representations of traffic data. In
summary, the above-mentioned uniqueness of long-term traffic fore-
casting tasks significantly affects the effectiveness of long-sequence
forecasting models.

Compared to long-sequence forecasting models, traffic forecasting
models achieve better performance. This is mainly because they model
correlations between time series with the help of graph convolution.
Most of them (Li et al., 2018; Shao et al., 2022¢, 2022d; Wu et al., 2019,
2020) utilize diffusion convolution, a variant of graph convolution, to
model the diffusion process at each time step. However, there is no free
lunch. The graph convolution brings a high complexity (Shao et al.,
2022c). As mentioned earlier, we had to implement these models with
the segment embedding in HUTFormer to reduce the length of input
tokens to make them runnable. Kindly note that although the latest
baseline STEP (Shao et al., 2022¢) can handle long-term historical data,
it still requires a downstream STGNN as the backend, which can only
make short-term future predictions. In summary, these models only
focus on short-term traffic forecasting and do not consider the unique-
ness of long-term traffic forecasting, i.e., exploiting multi-scale
representations.

Compared to all baselines, HUTFormer achieves state-of-the-art
performances by sufficiently addressing the issues of long-term traffic
forecasting tasks. Specifically, on the one hand, HUTFormer efficiently
handles the correlations between long-term time series with spatial-
temporal positional encoding and segment embedding. On the other

Data Method @Horizon 12 @Horizon 48 @Horizon 96 @Horizon 144 @Horizon 192 @Horizon 288
MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE(%)

METR-LA HI 10.44 23.21 10.42 23.19 10.43 23.23 10.43 23.32 10.40 23.34 10.22 22.81
DLinear 7.61 16.19 12.86 23.79 12.99 23.11 12.90 23.48 12.89 23.15 13.07 23.33
Informer 4.65 15.52 4.86 16.54 4.98 17.16 5.07 17.41 5.07 17.30 5.06 17.14
Autoformer 7.23 19.25 7.27 19.73 7.45 20.23 7.83 21.49 7.74 20.98 8.41 22.43
FEDformer 8.78 22.29 9.11 22.69 9.12 22.75 9.54 24.18 9.81 24.76 10.13 25.56
Pyraformer 4.22 12.84 4.55 14.93 4.75 15.81 4.80 15.89 4.81 15.68 4.62 14.79
PatchTST 4.43 13.58 5.02 16.37 5.14 16.64 5.19 16.98 5.21 16.67 5.25 17.16
DCRNN* 4.07 12.74 4.39 14.08 4.44 14.02 4.46 14.16 4.51 14.41 4.71 15.59
GWNet* 3.87 12.18 4.19 13.60 4.25 13.62 4.42 14.56 4.58 15.40 4.51 15.09
MTGNN* 4.01 12.31 4.31 13.84 4.53 14.85 4.59 14.77 4.57 15.18 4.75 15.93
STID 3.84 12.17 4.13 14.11 4.04 13.05 4.11 13.65 4.15 14.07 4.17 13.83
STEP* 3.74 11.60 4.14 13.24 4.22 13.52 4.38 14.07 4.34 13.96 4.43 14.42
D2STGNN* 3.71 11.24 3.96 12.84 3.99 13.26 4.05 13.17 4.05 13.36 4.09 12.78
HUTFormer 3.59 10.93 3.77 11.88 3.79 11.86 3.80 12.08 3.82 12.18 3.84 12.28

PEMS-BAY HI 3.37 7.84 3.36 7.80 3.36 7.77 3.36 7.76 3.36 7.74 3.38 7.79
DLinear 2.70 6.28 3.14 7.75 3.13 7.77 3.15 7.76 3.15 7.78 3.23 7.90
Informer 2.77 6.65 2.80 6.88 2.84 7.06 2.83 7.07 2.82 6.98 2.92 7.16
Autoformer 3.15 7.48 3.24 7.85 3.30 8.00 3.37 8.10 3.39 8.15 4.35 11.25
FEDformer 3.04 7.55 3.14 7.61 3.13 7.58 3.32 8.00 3.42 8.45 3.67 9.33
Pyraformer 2.53 6.21 2.71 6.72 2.64 6.39 2.74 6.65 2.75 6.68 2.77 6.81
PatchTST 2.35 5.94 2.92 7.45 2.96 7.52 3.00 7.62 3.01 7.67 3.10 7.73
DCRNN* 2.18 5.49 2.52 6.49 2.54 6.43 2.66 6.79 2.67 6.80 2.66 6.62
GWNet* 2.01 5.11 2.35 5.91 2.40 5.98 2.47 6.35 2.46 6.24 2.46 6.09
MTGNN* 2.17 5.40 2.45 6.11 2.51 6.04 2.52 6.13 2.57 6.19 2.70 6.40
STID 2.02 5.02 2.29 5.66 2.32 5.69 2.33 5.72 2.32 5.67 2.38 5.81
STEP* 2.00 4.94 2.33 5.93 2.38 6.05 2.44 6.26 2.45 6.24 2.54 6.41
D2STGNN* 2.04 4.97 2.26 5.44 2.29 5.60 2.34 5.55 2.31 5.50 2.38 5.64
HUTFormer 1.93 4.62 2.18 5.16 2.21 5.24 2.22 5.24 2.23 5.25 2.28 5.35
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Table 4
Long-term traffic forecasting on traffic flow datasets PEMS04 and PEMS08.
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Data Method @Horizon 12 @Horizon 48 @Horizon 96 @Horizon 144 @Horizon 192 @Horizon 288
MAE MAPE (%)  MAE MAPE (%)  MAE MAPE (%)  MAE MAPE (%)  MAE MAPE (%)  MAE MAPE(%)
PEMS04 HI 41.73 28.46 41.16 28.61 41.38 28.62 41.28 28.42 30.99 27.34 39.58 26.49
DLinear 27.29 19.83 37.20 26.51 37.50 26.78 37.57 26.87 37.17 25.27 36.87 25.21
Informer 25.94 17.56 25.72 18.05 25.60 18.27 25.98 17.81 26.42 17.67 27.42 18.57
Autoformer ~ 29.94  28.00 31.30 2741 31.47 2773 31.95  27.89 32.03  28.03 33.34  29.82
FEDformer 34.94 34.33 32.24 37.23 33.90 34.33 35.12 41.26 35.16 34.08 41.83 51.01
Pyraformer 23.40 17.18 25.40 18.80 26.45 19.89 26.22 19.01 26.51 19.18 26.58 20.57
PatchTST 2275  16.67 29.37  21.85 30.63  23.15 32.01  24.00 30.54  21.54 31.50  24.00
DCRNN* 22.25 16.59 24.42 18.89 25.20 19.17 26.31 19.61 27.32 19.74 28.04 21.02
GWNet* 22.24 16.51 23.50 18.29 24.08 18.07 24.85 18.21 25.83 18.98 31.17 21.00
MTGNN* 21.75 15.93 23.04 17.81 24.33 17.80 25.56 17.68 25.80 17.85 26.78 20.64
STID 21.01  15.24 2277 16.61 23.39  16.87 24.06  17.08 2443 17.22 2519  17.49
STEP* 20.82 15.56 22.23 17.11 22.87 17.21 24.46 17.97 24.89 17.40 26.18 18.47
D2STGNN* 21.55 16.03 22.98 17.04 24.16 17.57 24.50 17.93 24.59 17.19 24.79 17.97
HUTFormer 19.61 13.59 21.54 14.95 21.96 15.22 22.66 15.30 23.10 15.35 23.43 15.71
PEMSO8  HI 37.33  25.01 37.31  25.07 37.23  25.05 37.09  25.02 36.94  24.98 36.40 2476
DLinear 2291 17.23 34.13 24.15 34.34 25.54 34.44 23.80 34.52 23.91 35.11 23.71
Informer 24.55 14.76 24.80 15.03 24.72 15.03 25.07 15.11 24.82 14.91 25.09 15.61
Autoformer  31.36  25.44 3229 2713 33.19  27.45 3298  26.15 3357  25.78 36.75  28.82
FEDformer 24.62 20.01 26.76 21.85 28.56 23.02 30.33 24.47 29.11 23.14 29.91 24.47
Pyraformer 21.92 14.43 23.00 14.70 23.80 15.46 24.45 16.88 24.34 16.17 22.71 14.79
PatchTST 16.94 11.37 21.27 15.10 22.56 16.39 23.22 17.40 23.18 17.70 23.73 17.35
DCRNN* 18.64 13.47 20.42 14.92 20.97 15.11 21.63 15.51 22.45 16.23 22.95 16.72
GWNet* 17.07 11.57 19.55 11.93 20.38 14.33 20.49 14.82 20.00 14.68 20.29 15.20
MTGNN* 17.75 12.61 19.27 13.35 19.99 13.85 20.68 15.00 20.95 14.65 22.16 15.68
STID 16.40 11.42 18.53 13.26 19.17 13.66 19.59 13.78 19.59 14.03 20.23 15.35
STEP* 16.67 11.34 19.05 14.00 19.74 14.74 20.15 14.88 19.80 14.84 20.37 15.54
D2STGNN* 17.27 11.47 18.45 12.35 18.97 12.63 19.33 12.81 19.09 12.34 19.55 12.93
HUTFormer 15.18 10.09 16.72 11.26 17.23 11.55 17.59 11.74 17.83 11.84 18.44 12.20
5.4. Generalization
Il GPU memory Il Speed
MiB Seconds/epoch The ability of HUTFormer to generate and utilize multi-scale features
I D5o51] 3329 should also be effective in many non-traffic data, since the multi-scale
25000 < 3250 . . . . .
¢ ' features widely exists in many domains. In order to verify the general-
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Fig. 6. Efficiency study.

hand, HUTFormer effectively generates and utilizes multi-scale repre-
sentations based on the hierarchical U-Net.

5.3. Efficiency

In this section, we conduct more experiments to evaluate the effi-
ciency of the HUTFormer variants in Section 5.5. We conduct experi-
ments with a single NVIDIA V100 graphics card with 32 GB memory,
and report the GPU memory usage and running time. Specifically, for the
two-stage training variants, we report the largest GPU memory usage of
the two stages and report the sum of the running time in the encoding
and decoding stages. We conduct experiments on the METR-LA dataset.

The results are shown in Fig. 6. First, we can see that removing the
segment embedding (i.e., w/o SE) will significantly increase the
computational complexity, and require more GPU memory. Second,
compared with applying GCN, HUTFormer is more efficient and effec-
tive by leveraging the spatial-temporal positional encoding, which does
not increase much complexity.

ization of HUTFormer, in this part, we compare HUTFormer with more
latest Transformer-based long time series forecasting models [10, 74]
based on three commonly used long-sequence prediction datasets,
ETTh1, ETTm1, and Weather. The details of Crossformer (Zhang and
Yan, 2023) and Triformer (Cirstea et al., 2022) as well as the three
datasets are neglected for simplicity. Interest readers can refer to their
papers [10, 74]. We use the same setting as the other datasets in our
paper. As shown in Table 5, HUTFormer still outperforms these models
on these datasets, which further verifies the effectiveness and general-
ization of HUTFormer.

5.5. Ablation study

In this subsection, we conduct more experiments to evaluate the
impact of some important components and strategies. Specifically, we
evaluate from three aspects, including the effectiveness of the hierar-
chical U-Net structure, the input embedding strategy, and the two-stage
training strategy. Due to space limitations, we only present the results on
METR-LA datasets in Table 6.

The hierarchical U-Net structure is designed to generate and exploit
multi-scale features. Specifically, the encoder combines window self-
attention and segment merging to generate multi-scale features, while
the decoder primarily utilizes extracted features based on cross-scale
attention. Therefore, to evaluate their effectiveness, we set up three
variants. First, we replace the decoder with a simple concatenation,
named HUTFormer concat. The concatenation of features from different
scales naturally preserves all information. Second, we set HUTFormer
w/o decoder to remove the decoder and use the intermediate prediction
as the final prediction. The above two variants are used to demonstrate
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Table 5
Experiments on ETTh1, ETTm1, and Weather datasets.
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Data Method @Horizon 12 @Horizon 48 @Horizon 96 @Horizon 144 @Horizon 192 @Horizon 288
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
ETThl Informer 0.62 0.82 0.69 0.91 0.82 1.10 0.90 1.25 0.96 1.43 0.85 1.17
Autoformer 0.45 0.44 0.47 0.47 0.48 0.50 0.48 0.52 0.50 0.53 0.51 0.53
FEDformer 0.42 0.37 0.43 0.40 0.44 0.43 0.46 0.46 0.46 0.47 0.52 0.57
Pyraformer 0.56 0.63 0.57 0.64 0.65 0.79 0.74 0.92 0.76 1.03 0.79 1.09
Triformer 0.44 0.44 0.46 0.48 0.48 0.52 0.49 0.55 0.50 0.55 0.51 0.56
Crossformer 0.39 0.35 0.40 0.38 0.44 0.44 0.45 0.46 0.45 0.47 0.48 0.49
PatchTST 0.37 0.32 0.38 0.35 0.42 0.42 0.43 0.46 0.45 0.47 0.48 0.49
HUTFormer 0.36 0.31 0.38 0.35 0.41 0.41 0.43 0.44 0.45 0.47 0.47 0.47
ETTml Informer 0.53 0.59 0.60 0.67 0.63 0.74 0.68 0.85 0.72 0.91 0.74 0.95
Autoformer 0.49 0.53 0.53 0.61 0.53 0.62 0.54 0.63 0.54 0.63 0.62 0.76
FEDformer 0.37 0.29 0.41 0.37 0.43 0.40 0.44 0.42 0.43 0.42 0.46 0.47
Pyraformer 0.52 0.53 0.64 0.80 0.62 0.71 0.71 0.89 0.59 0.65 0.71 0.88
Triformer 0.34 0.26 0.39 0.34 0.39 0.35 0.41 0.39 0.41 0.38 0.43 0.42
Crossformer 0.32 0.23 0.41 0.37 0.42 0.37 0.51 0.51 0.53 0.52 0.58 0.61
PatchTST 0.29 0.21 0.35 0.32 0.36 0.34 0.38 0.38 0.38 0.38 0.40 0.41
HUTFormer 0.28 0.20 0.35 0.31 0.35 0.31 0.38 0.36 0.36 0.35 0.38 0.39
Weather Informer 0.34 0.27 0.38 0.36 0.40 0.38 0.43 0.42 0.45 0.46 0.45 0.48
Autoformer 0.36 0.29 0.38 0.33 0.39 0.35 0.41 0.39 0.42 0.41 0.44 0.44
FEDformer 0.32 0.24 0.34 0.27 0.35 0.30 0.36 0.32 0.38 0.35 0.47 0.48
Pyraformer 0.28 0.23 0.42 0.45 0.36 0.34 0.38 0.38 0.50 0.59 0.42 0.44
Triformer 0.15 0.12 0.23 0.20 0.26 0.22 0.28 0.24 0.32 0.29 0.34 0.33
Crossformer 0.14 0.11 0.22 0.19 0.25 0.21 0.27 0.23 0.31 0.27 0.32 0.31
PatchTST 0.14 0.11 0.22 0.18 0.25 0.21 0.27 0.23 0.31 0.28 0.33 0.32
HUTFormer 0.12 0.10 0.20 0.16 0.24 0.20 0.26 0.23 0.29 0.27 0.31 0.30
Table 6
Ablation study on the METR-LA dataset.
Variant @Horizon 12 @Horizon 48 @Horizon 96 @Horizon 144 @Horizon 192 @Horizon 288
MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE(%)
HUTFormer 3.59 10.93 3.77 11.88 3.79 11.86 3.80 12.08 3.82 12.18 3.84 12.28
concat 3.86 12.16 3.98 13.23 4.01 13.36 4.01 13.36 4.05 13.41 4.08 13.65
w/o decoder 3.80 11.94 3.85 12.33 3.90 12.64 3.88 12.91 3.96 12.91 3.97 12.93
w/o hierarchy 3.90 12.56 3.97 12.85 3.96 12.86 3.98 12.88 3.98 12.92 4.12 13.48
w/o ST-PE 4.11 12.68 4.78 15.80 4.90 16.44 5.00 16.81 5.13 17.47 5.25 17.56
GCN 3.79 11.87 4.23 14.14 4.28 14.32 4.30 14.21 4.32 14.28 4.35 14.40
w/o SE 3.76 11.83 3.86 12.39 3.85 12.35 3.91 12.73 3.92 12.75 4.03 13.12
end2end 3.72 11.60 3.95 12.59 3.97 12.83 3.95 12.58 3.95 12.58 4.00 12.73
w/o fix 3.64 11.28 3.85 12.11 3.88 12.49 3.90 12.40 3.93 12.57 3.91 12.57

that exploiting multi-scale features is a non-trivial challenge and our
hierarchical decoder is effective. Third, we set HUTFormer w/o hierar-
chy to further remove segment merging and replace the window
Transformer layer with a standard Transformer layer, to evaluate the
effectiveness of hierarchical multi-scale representations. As shown in
Table 6, HUTFormer significantly outperforms HUTFormer concat and
HUTFormer w/o decoder, which shows that it is not an easy task to
utilize the multi-scale features, and validates the effectiveness of our
decoder. In addition, HUTFormer w/o hierarchy shows that hierarchical
multi-scale features are crucial for accurate long-term traffic forecasting.
The above results show that generating and utilizing hierarchical multi-
scale features is important, and the designed hierarchical U-Net struc-
ture is effective.

The input embedding strategy aims to address the complexity issue
from both spatial and temporal dimensions. Specifically, it consists of a
Segment Embedding (SE) and a Spatial-Temporal Positional Encoding
(ST-PE). To verify their effectiveness, we set up three variants. First, we
set HUTFormer w/o ST-PE, which replaces the ST-PE with standard
learnable positional encoding. Second, we set HUTFormer GCN, which
replaces the spatial embeddings in ST-PE with graph convolution (Wu
et al., 2019). Third, we remove the segment embedding to get HUT-
Former w/o SE. As shown in Table 6, without ST-PE, the performance of
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HUTFormer decreases significantly. This is because modeling the cor-
relations between time series is the basis of traffic forecasting. In addi-
tion, we can see that the ST-PE strategy is significantly better than
performing graph convolution, indicating the superiority of ST-PE.
Moreover, removing segment embedding not only leads to a signifi-
cant decrease in performance but also increases the complexity due to
the increased sequence length. These results indicate the effectiveness of
the spatial-temporal positional encoding and segment merging.

Finally, we evaluate the two-stage training strategy of HUTFormer.
To this end, we set two variants. First, we set HUTFormer end2end,
which trains the HUTFormer in an end-to-end strategy. Second, we set
HUTFormer w/o fix, which does not fix the parameter of the encoder
when training the decoder. The results in Table 6 show that either the
end-to-end strategy or the strategy without fixing the encoder leads to
insufficient optimization and significant performance degradation. In
addition, both strategies require more memory. In contrast, our two-
stage strategy achieves the best performance and efficiency
simultaneously.

5.6. Hyper-parameter and convergence study

In this subsection, we first conduct experiments to study the impact
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of two key hyper-parameters: segment size and window size. We
conduct experiments on the METR-LA dataset and report the MAE at
horizon 288. Moreover, we report the training speed of the encoder,
since these hyper-parameters mainly affect the encoder. As shown in
Fig. 7a, the segment size L = 12 achieves the best performance. Smaller
segments cannot provide robust semantics, while larger segments ignore
more local details. In addition, we can see that as the segment size in-
creases, the encoder runs faster (s/epoch). Kindly note that changing the
segment size may change the depth of the HUTFormer to ensure that the
receptive field covers the entire sequence. The impact of the window
size is shown in Fig. 7b, where larger window sizes perform worse. This
is because the ability to extract multi-scale features is weakened as the
window size increases. Moreover, the efficiency of HUTFormer will also
decrease (Liu et al., 2021b) on larger window sizes.

Additionally, we conduct a convergence analysis experiment. Fig. 7¢c
illustrates the validation set loss during the two-phase process, showing
the convergence behavior of the encoding and decoding stages. Com-
bined with Table 6 and Fig. 9, it can be observed that the predictions
during the encoding phase already achieve good accuracy. The decoding
phase, by introducing multi-scale information, further improves the
prediction results, especially in the details (particularly in periods of
traffic congestion), leading to a further reduction in loss.

5.7. Visualization

5.7.1. Spatial-temporal positional encoding

To further understand the HUTFormer in modeling the correlations
between multiple time series in traffic data, we analyze the spatial-
temporal positional encoding layer. Modeling correlations between
multiple time series have been widely discussed in multivariate time
series forecasting (Shao et al., 2022c; Wu et al., 2019, 2020). Previous
works usually utilize Graph Convolution Networks (GCN), which
conduct message passing in a pre-defined graph. GCN is a powerful
model, but it has high complexity of O(N?). Very recent works, STID
(Shao et al., 2022b) and ST-Norm (Deng et al., 2021), identify that graph
convolution in multivariate time series forecasting is essentially used for
addressing the indistinguishability of samples on the spatial dimension.
Based on such an observation, STID proposes a simple but effective
baseline of attaching spatial and temporal identities, achieving a similar
performance of GCN but high efficiency. The Spatial-Temporal Posi-
tional Encoding (ST-PE) is designed based on such an idea (Shao et al.,
2022b).

The ST-PE contains three learnable positional embeddings,
E € RV*4 TTP ¢ RNoxd and TPW ¢ RNv*d where N is the number of
time series, Np is the number of time slots of a day (determined by the
sensor's sampling frequency), and Ny = 7 is the number of days in a
week. We utilize t-SNE (van der Maaten and Hinton, 2008) to visualize
these three embedding matrices. Kindly note that T only have 7

11

embeddings, which is significantly less than the hidden dimension 32,
making it hard to get correct visualizations. Therefore, we additionally
train a HUTFormer with the embedding size of T"™ to 2 to get a more
accurate visualization.

The results are shown in Fig. 8. First, as shown in Fig. 8a, the spatial
embeddings are likely to cluster. For example, traffic conditions
observed by sensors that are connected or have similar geographical
functionality are more likely to be similar. However, it is not as apparent
as in the results in STID (Shao et al., 2022b). We conjecture this is
because the impact of the indistinguishability of the samples becomes
weaker as the length of the historical data increases. Second, Fig. 8b
shows the embeddings of 288 time slots, where the daily periodicity is
very obvious. Third, Fig. 8c visualizes the embeddings of each day in a
week, where weekdays are closer and weekends’ are different.

5.7.2. Prediction visualization

In order to further intuitively evaluate HUTFormer, in this subsec-
tion, we visualize the prediction of HUTFormer and other baselines on
the METR-LA dataset. Specifically, we select sensor 12 and displayed its
data from June 05th, 2012 to June 06th, 2012 (located in the test
dataset).

Fig. 9 shows two consecutive days from the METR-LA dataset: The
first day is used as historical input, while the second day is the prediction
target. This design serves two purposes. First, the strong similarity be-
tween the two days illustrates the dataset's pronounced periodicity.
Second, the series captures sharp, localized fluctuations during the
morning and evening rush hours, revealing the onset and dissipation of
traffic congestion.

Capturing global patterns is essential for modeling overall cyclical
trends, whereas capturing local patterns is crucial for accurately fore-
casting fine-grained changes such as rapid, short-term spikes. As dis-
cussed previously, models like Autoformer (Wu et al., 2021), Graph
WaveNet (Wu et al., 2019), and HUTFormer w/o hierarchy focus pri-
marily on global dynamics and largely overlook local feature extraction.
Consequently, although they reproduce broad periodic behavior
reasonably well, their accuracy falls during intervals of rapid change-
—specifically, the congestion periods marked by the red background in
the figure. By contrast, HUTFormer effectively models multi-scale fea-
tures and thus maintains high accuracy even in these volatile segments.
This result underscores the importance of integrating features at mul-
tiple scales when modeling complex, periodic traffic data.

5.8. Limitations

Although HUTFormer demonstrates strong performance, it still has
several issues that need to be addressed in future work. First, the most
significant issue with HUTFormer is its lack of generalization to new
sensors. Graph-based spatial dependency modeling methods (Kipf and
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Welling, 2017; Li et al., 2018; Wu et al., 2019) are inherently inductive
(Hamilton et al., 2017), meaning they can make predictions on graphs
with changing nodes and relationships. However, HUTFormer relies on
spatial positional encoding to capture spatial dependencies. For newly
introduced nodes, the positional encoding requires training, which
means HUTFormer cannot naturally perform inductive reasoning. Sec-
ond, the training of HUTFormer is more complex than that of end-to-end
methods. Although the two-phase training strategy is effective, it
objectively makes the model's training process less convenient
compared to end-to-end models. Therefore, exploring methods for
end-to-end generation and utilization of multi-scale information is a
promising avenue for future research. In addition, the reliability of
longer-term forecasting is crucial. The longer the forecast period, the
greater the uncertainty. Only by systematically quantifying these un-
certainties and incorporating known external events into the model can
more accurate and practically valuable results be achieved.

6. Conclusions

In this study, we make the first attempt to explore the long-term
traffic forecasting problem. To this end, we reveal its unique chal-
lenges in exploiting the multi-scale representations of traffic data, and
propose a novel Hierarchical U-Net TransFormer (HUTFormer) to effi-
ciently and effectively address them. The HUTFormer mainly consists of
a hierarchical encoder and decoder. On the one hand, the hierarchical
encoder generates multi-scale representations based on the window self-
attention mechanism and segment merging. On the other hand, the hi-
erarchical decoder effectively utilizes the extracted multi-scale features
based on the cross-scale attention mechanism. In addition, HUTFormer
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adopts segment embedding and spatial-temporal positional encoding as
the input embedding strategy to address the complexity issue. Extensive
experiments on four commonly used traffic datasets show that the pro-
posed HUTFormer significantly outperforms state-of-the-art traffic
forecasting and long-sequence time series forecasting baselines.

Replication and data sharing

The source code is available at https://drive.google.com/file/d
/1GA_wFv71P3mk20VpM-PPINYBmX7f4Y4d/view. Follow the
detailed instructions in the README. md (included later in the docu-
ment) to set up the environment and data, and you will be able to train
HUTFormer with ease.
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