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A B S T R A C T

Traffic forecasting, which aims to predict traffic conditions based on historical observations, has been an 
enduring research topic and is widely recognized as an essential component of intelligent transportation. Recent 
proposals on Spatial-Temporal Graph Neural Networks (STGNNs) have made significant progress by combining 
sequential models with graph convolution networks. However, due to high complexity issues, STGNNs only focus 
on short-term traffic forecasting (e.g., 1-h ahead), while ignoring more practical long-term forecasting. In this 
paper, we make the first attempt to explore long-term traffic forecasting (e.g., 1-day ahead). To this end, we first 
reveal its unique challenges in exploiting multi-scale representations. Then, we propose a novel Hierarchical U- 
net TransFormer (HUTFormer) to address the issues of long-term traffic forecasting. HUTFormer consists of a 
hierarchical encoder and decoder to jointly generate and utilize multi-scale representations of traffic data. 
Specifically, for the encoder, we propose window self-attention and segment merging to extract multi-scale 
representations from long-term traffic data. For the decoder, we design a cross-scale attention mechanism to 
effectively incorporate multi-scale representations. In addition, HUTFormer employs an efficient input embed
ding strategy to address the complexity issues. Extensive experiments on four traffic datasets show that the 
proposed HUTFormer significantly outperforms state-of-the-art traffic forecasting and long time series fore
casting baselines.

1. Introduction

Traffic forecasting aims at predicting future traffic conditions (e.g., 
traffic speed or flow) based on historical traffic conditions observed by 
sensors. With the development of Intelligent Transportation Systems 
(ITS), traffic forecasting fuels a wide range of services related to traffic 
scheduling, public safety, etc. (Chu et al., 2019, 2024; Guo et al., 2024; 
Jin et al., 2023; Li et al., 2025; Liu et al., 2023; Lv et al., 2023; Xu et al., 
2023). For example, predicting long-term traffic changes (e.g., 1-day) is 
valuable for people to plan their route in advance to avoid possible 
traffic congestion.

In general, traffic data1 is presented in the form of multiple time 
series, where each time series records traffic conditions observed by 

sensors deployed on a road network. A critical property of traffic data is 
that there exist strong correlations between time series owing to the 
connection of road networks. To make accurate traffic forecasting, state- 
of-the-art proposals (Jin et al., 2022; Li et al., 2018; Wu et al., 2019) 
usually adopt Spatial-Temporal Graph Neural Networks (STGNNs), 
which model the correlations between time series based on Graph 
Convolution Networks (GCNs) (Defferrard et al., 2016; Kipf and Welling, 
2017; Li et al., 2018). However, graph convolution brings significant 
improvements in performance and 50 complexity at the same time. 
Computational complexity usually increases linearly or quadratically 
with the length and number of time series (Shao et al., 2022c). There
fore, it is difficult for STGNNs to scale to long-term historical traffic data, 
let alone predict long-term future traffic conditions. In fact, most 
existing works focus on short-term traffic prediction, e.g., predicting 
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1 For the sake of brevity, in this paper, we use ‘traffic condition data’ and ‘traffic data’ interchangeably.
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future 12 time steps (1 h in commonly used datasets). Such an inability 
to make long-term traffic forecasting limits the practicality of these 
models.

In this study, we focus on long-term traffic forecasting, e.g., pre
dicting a future day. Except for the correlations between time series, the 
long-term traffic forecasting task has its own uniqueness. In the 
following, we discuss them in detail to motivate model design. Examples 
of traffic data is shown in Fig. 12. On the one hand, when observing from 
a global perspective, traffic data usually exhibit regular changes, e.g., 
daily periodicity. On the other hand, local details are crucial for traffic 
forecasting. For example, we must capture the rapidly decreasing traffic 
changes when daily traffic congestion occurs. To capture different pat
terns, exploiting multi-scale representations of traffic data is the key 
challenge of accurate long-term traffic forecasting. Specifically, smaller- 
scale and larger-scale representations are extracted based on smaller and 
larger receptive fields, respectively. The former is usually semantically 
weak but fine-grained, which facilitates the prediction of local details, e. 
g., rapid changes during traffic congestion. In contrast, the latter is 
coarse-grained but semantically strong, which is helpful in predicting 
global changes, e.g., daily periodicity. An illustration is shown in Fig. 1b. 
The prediction based on large-scale features captures daily periodicity 
but misses local details, which can be fixed by further incorporating 
small-scale features.

However, it is a challenging task to exploit multi-scale representa
tions of traffic data. We discuss it from two aspects: Generating and 
utilizing multi-scale representations. On the one hand, most existing 
models cannot generate multi-scale representations of traffic data. State- 
of-the-art models for long time series forecasting (Zhou et al., 2021) 
mainly adopt Transformers to capture the long-term dependencies based 
on self-attention mechanisms (Vaswani et al., 2017). However, standard 
self-attention naturally has a global receptive field and thus can only 
generate representations on a fixed scale. On the other hand, utilizing 
multi-scale representations for traffic forecasting is also a challenging 
task, as it usually requires a specific decoder. For example, in computer 
vision tasks like object detection and semantic segmentation, re
searchers designed decoders such as FPN (Lin et al., 2017) and U-Net 
(Ronneberger et al., 2015) to utilize the multi-scale representations 
extracted by the pre-trained encoder (He et al., 2016). These architec
tures usually require pixel alignment of input and output images. 
However, the historical and future sequences in traffic forecasting 
problems are not the same sequences, i.e., not aligned, making existing 
approaches (Lin et al., 2017; Ronneberger et al., 2015) inapplicable.

Based on the above discussion, we summarize three challenges that 
the desired long-term traffic forecasting model should address. First, it 
must efficiently model the correlations between multiple long-term time 
series. Second, it should generate multi-scale representations of traffic 

data by an encoder. Third, it should include a decoder for traffic fore
casting tasks to effectively utilize the multi-scale representations 
generated by the encoder.

To address the above challenges, we propose a novel Hierarchica U- 
Net TransFormer (named HUTFormer). As shown in Fig. 2, HUTFormer 
is a two-stage model consisting of a hierarchical encoder and a hierar
chical decoder, forming an inverted U-shaped structure. To address the 
efficiency problem, HUTFormer designs an efficient input embedding 
strategy, which employs segment embedding and spatial-temporal po
sitional encoding to significantly reduce the complexity of modeling 
multiple long-term time series in both temporal and spatial dimensions. 
To generate multi-scale representations, the HUTFormer encoder pro
poses a window Transformer layer to limit the receptive field, and then 
designs segment merging as a pooling layer to extract larger-scale fea
tures. Thus, lower layers of the encoder focus on smaller-scale features, 
while higher layers generate larger-scale features. Then, HUTFormer 
makes an intermediate prediction based on the top-level representa
tions. To utilize multi-scale representations, the HUTFormer decoder 
proposes a cross-scale attention mechanism to address the misalignment 
issue, which retrieves information for each segment of the intermediate 
prediction from multi-scale representations, thus enabling the fine- 
tuning of the intermediate prediction. By exploiting the multi-scale 
representations of traffic data, HUTFormer is capable of making accu
rate long-term traffic forecasting. The main contributions of this paper 
are summarized as follows: 

• To our best knowledge, this is the first attempt to study long-term 
traffic forecasting. We reveal its unique challenges in exploiting 
multi-scale representations of traffic data, and propose a novel Hi
erarchical U-Net TransFormer (HUTFormer) to address them.

• We propose window self-attention and cross-scale attention mecha
nisms to generate and utilize multi-scale representations effectively. 
In addition, to address complexity issues, we design an input 
embedding strategy that includes segment embedding and spatial- 
temporal positional encoding.

• Extensive experiments on four traffic datasets show that the pro
posed HUTFormer significantly outperforms state-of-the-art traffic 
forecasting and long-sequence time series forecasting baselines, and 
effectively exploits the multi-scale representations of traffic data.

2. Related work

2.1. Traffic forecasting

Previous traffic forecasting studies usually fall into two categories, i. 
e., knowledge-driven (e.g., queuing theory) and early data-driven 
models (Belhadi et al., 2020; Cho et al., 2014; Kumar and Vanajakshi, 
2015; Liu et al., 2019, 2021a; Sutskever et al., 2014; Wang et al., 2020b; 
Yu and Koltun, 2016). However, these methods usually ignore the 

Nomenclature

T The length of history traffic data
Tf The length of future traffic data
N The number of time series
C The number of feature channels in a traffic sensor
X History data of shape ℝT×N×C

Y Future data of shape ℝTf×N×C

Xi History data of sensor i
Yi Future data of sensor i

Ŷ
i

Prediction data of sensor i
L The segment size

P The number of segments, T = P × L
d The hidden dimension
W Parameter matrix of the fully connected layer
b Parameter of the bias of the fully connected layer
E Spatial embeddings of shape ℝN×d1

T Temporal embeddings
ND The number of time slots of a day
NW The number of days in a week
S Embeddings of each segment after segment embedding
U Embeddings of each segment after spatial-temporal 

positional encoding
H Hidden states

2 Fig. 1b is the future part of Fig. 1a
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correlation between time series and the high non-linearity of time series 
(Shao et al., 2022d), which severely limits the effectiveness of these 
methods. With the development of deep learning (Huang et al., 2025; 
Shao et al., 2025b; Wang et al., 2023a), Spatial-temporal Graph Neural 
Networks (STGNNs) were proposed recently (Li et al., 2018) to model 
the complex spatial-temporal correlations in traffic data. Specifically, 
STGNNs combine Graph Neural Networks (GNNs) (Defferrard et al., 
2016; Kipf and Welling, 2017; Shao et al., 2022a) and sequential models 
(e.g., CNN (Yu and Koltun, 2016) or RNN (Cho et al., 2014)), to model 
the complex spatial-temporal correlation in traffic data. For example, 
DCRNN (Li et al., 2018), ST-MetaNet (Pan et al., 2019), AGCRN (Bai 
et al., 2020), etc. (Li et al., 2023; Shang et al., 2021; Yu et al., 2018), are 
RNN-based methods, which combine GNN with recurrent neural net
works. Graph WaveNet (Wu et al., 2019), MTGNN (Wu et al., 2020), 
STGCN (Yu et al., 2018), and StemGNN (Cao et al., 2020) are CNN-based 
methods (Han et al., 2021), which usually combines GNN with the 
Temporal Convolution Network (TCN (Yu and Koltun, 2016)). More
over, techniques such as attention mechanisms and spectral theories are 
also widely employed in STGNNs (Guo et al., 2019, 2022; Li et al., 2024; 
Park et al., 2020; Shao et al., 2025c; Wang et al., 2020a; Yu et al., 2024; 
Zheng et al., 2020).

Although STGNNs have achieved significant progress, their 
complexity is high. Specifically, their complexity usually increases lin
early or quadratically with the length and the number of time series 
(Shao et al., 2022c), since they need to deal with both temporal and 
spatial dependency at every step. Thus, most of them focus on short-term 
traffic forecasting based on short-term history data, e.g., predicting 
future 1-h traffic conditions based on 1-h historical data (Bogaerts et al., 

2020; Li et al., 2018; Shao et al., 2022c, 2022d; Wu et al., 2019, 2020). A 
recent work STEP (Shao et al., 2022c) attempts to address this issue 
based on the time series pre-training model. It significantly enhances 
STGNN's ability to exploit long-term historical data. However, STEP 
requires a downstream STGNN as the backbone, which still focuses on 
short-term traffic forecasting.

Although STGNN-based traffic forecasting has made significant 
progress, these models only focus on short-term traffic forecasting, and 
cannot handle long-term traffic forecasting. On the one hand, due to the 
high complexity, most of them can not handle long-term history data, let 
alone predict long-term future traffic conditions. On the other hand, 
apart from efficiency issues, long-term traffic forecasting also has its 
unique challenges, which require exploiting multi-scale representations 
of traffic data to capture the complex long-term traffic dynamics.

2.2. Long-sequence time series forecasting

Recently, long-sequence time series forecasting has received much 
attention (Liu et al., 2022; Shao et al., 2025a; Wu et al., 2021; Zeng et al., 
2023; Zhou et al., 2021, 2022). They aim to make long-term future 
predictions by modeling long-term historical sequences. For example, 
Informer (Zhou et al., 2021) proposes a ProbSparse self-attention 
mechanism to replace the standard self-attention, which enhances the 
predictive ability of the standard Transformer in the long-sequence 
forecasting problem. Autoformer (Wu et al., 2021) designs an efficient 
Auto-Correlation mechanism to conduct dependencies discovery and 
information aggregation at the series level. DLinear (Zeng et al., 2023) 
rethinks Transformer-based techniques and proposes a simple linear 

Fig. 1. Examples of long-term traffic forecasting.

Fig. 2. Overview of the proposed HUTFormer. Left: The hierarchical encoder. It generates multi-scale features for traffic data based on window Transformer layer 
and segment merging, and makes an intermediate prediction. Right: The hierarchical decoder. It fine-tunes the intermediate prediction by incorporating multi-scale 
features based on cross-scale Transformer layer. In addition, segment embedding and spatial-temporal positional encoding are proposed to address complexity issues.
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model based on decomposition to achieve better accuracy. Recently, 
many advanced Transformer-based models have been proposed, such as 
PatchTST (Nie et al., 2023), Crossformer (Zhang and Yan, 2023), Sca
leformer (Shabani et al., 2023), and DSformer (Yu et al., 2023).

Although these models have made considerable progress in long- 
term time series forecasting, they are not designed for traffic data, 
which significantly affects their effectiveness in traffic forecasting 
problems. We discuss it from two aspects. First of all, there are strong 
correlations between multiple time series in traffic data, which is an 
important bottleneck in traffic forecasting (Li et al., 2018). However, 
long-sequence time series forecasting models usually do not pay atten
tion to such spatial correlations (Cirstea et al., 2022; Liu et al., 2022; 
Shabani et al., 2023; Wu et al., 2021; Zhou et al., 2021, 2022), or are not 
efficient enough (Zhang and Yan, 2023). Second, as discussed in Section 
1, long-term traffic forecasting requires exploiting multi-scale repre
sentations of traffic data to capture the complex long-term traffic dy
namics. However, long-sequence forecasting models usually rely on the 
self-attention mechanism and its variants, which can not explicitly 
generate multi-scale features (Nie et al., 2023; Wu et al., 2021; Zhou 
et al., 2021).

3. Preliminaries

In this section, we define the notions of traffic data and traffic 
forecasting task. 

Definition 1. Traffic data X ∈ ℝT×N×C denotes the observation from 
all sensors on the traffic network, where T is the number of time steps, N 
is the number of traffic sensors, and C is the number of features collected 
by sensors. We additionally denote the data from the sensor i as 
Xi ∈ ℝT×C. 

Definition 2. Traffic forecasting aims to predict the traffic values Y ∈

ℝTf×N×C of the Tf nearest future time steps based on the given historical 
traffic data X ∈ ℝTh×N×C from the past Th time steps. In this study, we 
focus on long-term traffic forecasting, e.g., forecasting for a day in the 
future.

4. Model architecture

4.1. Overview

As illustrated in Fig. 2, HUTFormer is based on a hierarchical U-Net 
structure to generate and utilize multi-scale representations of traffic 
data. In this subsection, we intuitively discuss each component of 
HUTFormer and its two-stage training strategy.

First, we discuss the hierarchical encoder. The window Transformer 
layer is the basis for generating multi-scale representations, which cal
culates self-attention within a small window to limit the receptive field. 
Then, segment merging acts as a pooling layer, reducing the sequence 
length to produce larger-scale representations. By combining them, 
lower layers can focus on smaller-scale features while higher layers 
focus on larger-scale features, thus successfully generating multi-scale 
features. Then, an intermediate prediction is made based on the top- 
layer representations. However, considering that the top-layer features 
are semantically strong but coarse-grained, the intermediate prediction 
may fail to capture rapidly changing local details, e.g., the red line in 
Fig. 1b.

To address the above problem, the hierarchical decoder aims to fine- 
tune the intermediate prediction by incorporating multi-scale repre
sentations. U-Net (Cao et al., 2022; Ronneberger et al., 2015) is a pop
ular structure for utilizing multi-scale representations, especially in 
computer vision tasks (e.g., semantic segmentation). In these tasks, the 
pixels of the input and target images are aligned, i.e., models operate on 
the same image. However, for traffic forecasting tasks, the input and 
output sequences are not the same sequence, i.e., not aligned. Thus, the 

representations generated by the encoder and the decoder cannot be 
directly superimposed as regular U-Net structures (Cao et al., 2022; 
Ronneberger et al., 2015) do for computer vision tasks. To this end, we 
design a cross-scale Transformer layer, which uses the representations 
from the decoder as queries and the multi-scale features from the 
encoder as keys and values to retrieve information. Such a top–down 
pathway and lateral connects help to combine the multi-scale repre
sentations, thus enhancing the prediction accuracy.

In addition, HUTFormer addresses complexity issues based on an 
efficient input embedding strategy, which consists of segment embed
ding and spatial-temporal positional encoding. On the one hand, 
segment embedding reduces complexity from the temporal dimension 
by using time series segments as basic input tokens. This simple opera
tion has significant benefits in both reducing the length of the input 
sequence and providing more robust semantics (Shao et al., 2022c). On 
the other hand, spatial-temporal positional encoding is designed to 
replace the standard positional encoding (Dosovitskiy et al., 2021; 
Vaswani et al., 2017) in Transformer. More importantly, it efficiently 
models the correlations among time series from the perspective of 
solving the indistinguishability of samples (Deng et al., 2021; Shao et al., 
2022b; Wang et al., 2023b), avoiding the high complexity of conducting 
graph convolution (Li et al., 2018; Wu et al., 2019) in the spatial 
dimension.

Finally, we propose the training strategy: a two-stage strategy. The 
first stage aims to train the hierarchical encoder based on the Mean 
Absolute Error (MAE) between the intermediate prediction and ground 
truth. In the second stage, we only train the decoder, while the param
eters of the encoder are fixed to act as the multi-scale feature extractor. 
The reason for adopting the two-stage strategy is that traffic forecasting 
tasks are different from tasks that employ an end-to-end strategy (e.g., 
semantic segmentation (Cao et al., 2022; Ronneberger et al., 2015) and 
object detection (Lin et al., 2017) in computer vision). Specifically, in 
computer vision tasks, pre-trained vision models (e.g., pre-trained 
ResNet (He et al., 2016)) usually serve as the backbone to extract 
multi-scale features (Lin et al., 2017). However, there is no pre-trained 
model for time series that can extract multi-scale features. Therefore, 
optimizing the feature extractor (i.e., the encoder) and downstream 
networks (i.e., the decoder) in an end-to-end fashion may be insufficient. 
The experimental results in Section 5.5 also verify this hypothesis. Next, 
we introduce each component in detail.

4.2. Input embedding

Segment embedding. Most previous works usually use single data 
points as the basic input units. However, isolated points of time series 
usually give less semantics (Shao et al., 2022c) and are more easily 
affected by noise. Therefore, HUTFormer adopts segment embedding, i. 
e., dividing the input sequence into several segments to get the input 
tokens. Specifically, given the time series Xi ∈ ℝT×C from sensor i, 
HUTFormer divides it into P non-overlapping segments of length L, i.e., 
T = P*L. We denote the jth segment as Xi

j ∈ ℝLC. Then, we conduct the 
input embedding layer based on these segments: 

Si
j = W⋅Xi

j + b (1) 

where Si
j ∈ ℝd is the embedding of segments j of the time series from 

sensor i, and d is the hidden dimension. W ∈ ℝd×(LC) and b ∈ ℝd are 
learnable parameters shared by all segments.

In summary, applying segment embedding brings two benefits. First, 
it provides more robust semantics. Second, it significantly reduces the 
sequence length to reduce computational complexity.

Spatial-temporal positional encoding. In this study, we propose to 
replace the standard positional encoding in Transformer-based networks 
(Dosovitskiy et al., 2021; Vaswani et al., 2017) with Spatial-temporal 
Positional Encoding (ST-PE). Specifically, given the segment 
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embedding Si
j ∈ ℝd of segments j from time series i, ST-PE conduct po

sitional encoding on the spatial and temporal dimensions 
simultaneously: 

Ui
j = Linear(Si

j

⃦
⃦
⃦Ei

⃦
⃦
⃦TTiD

j

⃦
⃦
⃦TDiW

j ) (2) 

On the spatial dimension, we define the spatial positional embed
dings E ∈ ℝN×d1 , where N is the number of time series (i.e., sensors), and 
d1 is the hidden dimension. On the temporal dimension, we define two 
semantic positional embeddings, TTiD ∈ ℝND×d2 and TDiW ∈ ℝNW×d3 , 
where ND is the number of time slots of a day (determined by the sensor's 
sampling frequency) and NW = 7 is the number of days in a week. The 
temporal embeddings are thus shared among slots for the same time of 
the day and the same day of the week. Semantic temporal positional 
embeddings are helpful since traffic systems usually reflect the period
icity of human society. In addition, kindly note that all other baseline 
models (Li et al., 2018; Liu et al., 2022; Shao et al., 2022d; Wu et al., 
2019, 2021; Zhou et al., 2022) also use such temporal features, so there 
is no unfairness. Linear(⋅) is a linear layer to reduce the hidden dimen
sion. E, TTiD, and TDiW are trainable parameters.

Embedding E is vital for reducing the complexity of modeling the 
spatial correlations between time series. This is because attaching 
spatial embeddings plays a similar role to GCN in terms of solving the 
indistinguishability of samples (Shao et al., 2022b), but with two pri
mary advantages. On the one hand, it is more efficient than GCNs, which 
usually have O(N2) complexity. On the other hand, it does not generate 
many additional network parameters than approaches based on 
variable-specific modeling (Bai et al., 2020; Cirstea et al., 2022).

4.3. Hierarchical encoder

Window Transformer layer. Standard Transformer layers (Vaswani 
et al., 2017) are designed based on the multi-head self-attention mech
anism. As shown in Fig. 3a, it computes the attention among all input 
tokens. Therefore, each layer of the Transformer layer has an infinite 
receptive field, and many works (Liu et al., 2022; Wu et al., 2021; Zhou 
et al., 2021, 2022) try to capture long-term dependencies based on such 
a feature.

However, the infinite receptive field makes the standard transformer 
layers unable to generate multi-scale features (Liu et al., 2021b). 
Inspired by recent development in computer vision (Liu et al., 2021b), 
we apply the window self-attention in HUTFormer to extract the hier
archical multi-scale features. An example of window self-attention with 
windows size 2 is shown in Fig. 3b. Window self-attention forces 
calculating attention inside non-overlapping windows, thereby limiting 
the size of the receptive field. By replacing multi-head self-attention in 
standard Transformer layers (Vaswani et al., 2017) with the Window 
Multi-head Self-Attention (W-MSA), we present the window Trans
former layer: 

Hinʹ
= W − MSA(LN(Hin)) + Hin

Hout = MLP(LN(Hinʹ
)) + Hinʹ (3) 

where LN(⋅) is the layer normalization, and MLP(⋅) is the multi-layer 

perceptron. Hin ∈ ℝP×d and Hout ∈ ℝP×d are the input and output se
quences. P is the sequence length, and d is the hidden dimension. By 
limiting the receptive field size, the window transformer layer is the 
basis for extracting multi-scale features.

Segment merging. To generate hierarchical multi-scale represen
tations, we adopt segment merging, which reduces the number of tokens 
and increases the number of hidden dimensions as the network gets 
deeper. As illustrated in Fig. 4, segment merging divides the token series 
into non-overlapping groups of size 2, and concatenates the features 
within each group.

By combining the segment merging and window transformer layer, 
we get the basic block of the hierarchical encoder (i.e., the blue block in 

Fig. 2). Assuming (Hi)
l
enc ∈ ℝPl×dl is the representation of series i after 

block l (l ≥ 1) of the encoder, the (l + 1)th block is computed as 

(Hi)
ĺ
enc = SegmentMerging((Hi)

l
enc)

(Hi)
l+1
enc = WindowTransformer((Hi)

(ĺ )
enc)

(4) 

where (Hi)
l+1
enc ∈ ℝPl+1×dl+1 is the representation of time series i after block 

l + 1 of the encoder. Pl+1 = Pl

2 is the number of tokens after (l + 1)th 
layer, and dl+1 = 2dl+1 is the hidden dimension.

Prediction layer. Assuming there are S blocks in the encoder, 
HUTFormer makes an intermediate prediction with a linear layer: 

Ŷ
i
enc = Linear( ‖

PS

j=1
(Hi

j)
S
enc
) (5) 

where PS is the number of tokens after the Sth block. Ŷ
i
∈ ℝTf×C is the 

prediction of time series i. Considering the prediction from all N time 
series, Ŷ

enc
∈ ℝTf×N×C, we compute the Mean Absolute Error (MAE) as 

regression loss to train the hierarchical encoder: 

Lenc =
1

Tf NC
∑Tf

j=1

∑N

i=1

∑C

k=1
|Ŷ

enc
ijk − Yijk| (6) 

4.4. Hierarchical decoder

Cross-scale Transformer layer. The hierarchical decoder aims to 
effectively utilize the multi-scale features, to fine-tune each segment of 
the intermediate prediction. However, as discussed in Section 4.1, the 
history and future sequence in traffic forecasting tasks are not aligned, 
making the feature sequences extracted by the encoder and the decoder 
cannot be directly superimposed. Therefore, we design a cross-scale 
attention mechanism to select and incorporate multi-scale features. 
Different from self-attention, cross-scale attention utilizes the 

Fig. 3. Standard self-attention v. s. Window self-attention.

Fig. 4. An illustration of segment merging.
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representations of the decoder as queries to retrieve the multi-scale 
features from the encoder. For brevity, we denote Henc ∈ ℝPenc×denc as 
the representation from the encoder and Hdec ∈ ℝPdec×ddec as the corre
sponding representation from the decoder. Then, the Cross-scale 
Attention (CA) is computed as 

CA(Henc;Hdec) = Softmax(
Hdec(Hʹ

enc)
T

̅̅̅̅̅̅̅̅
ddec

√ )Hʹ
enc

Hʹ
enc = Linear(Henc)

(7) 

The Linear(⋅) layer is used to transform the hidden dimension from 
denc to ddec. By replacing the multi-head self-attention with Multi-head 
Cross-scale Attention (MCA), we present the cross-scale Transformer 
layer as 

Hinʹ
dec = MCA(LN(Hin

enc;H
in
dec)) + Hin

dec

Hout
dec = MLP(LN(Hinʹ

dec)) + Hinʹ
dec

(8) 

where Hin
enc is the multi-scale feature from the encoder, and Hin

dec is the 
input feature from the decoder. Hout

dec is the output of the cross-scale 
Transformer layer.

Prediction layer. Assuming (Hi
j)

S
dec

∈ ℝddec is the representation of 
the decoder's last block (i.e., the Sth block) for jth segment of ith time 
series, HUTFormer makes the final prediction for each segment with a 
shared linear layer: 

(Ŷ
i
j)dec = Linear((Hi

j)
S
dec
) (9) 

where (Ŷ
i
j)dec ∈ ℝLC is the final prediction of segment j of time series i. 

Similar to the encoder, we consider the prediction from all Pdec segments 

(Pdec × L = Tf) of all N time series, Ŷ
dec

∈ ℝTf×N×C, and compute the MAE 
loss to train the hierarchical decoder: 

Ldec =
1

Tf NC
∑Tf

j=1

∑N

i=1

∑C

k=1
|Ŷ

dec
ijk − Yijk| (10) 

Kindly note that the parameters of the encoder are fixed during this 
stage to serve as a pre-training model for extracting robust hierarchical 
multi-scale representations of traffic data.

5. Experiments

In this section, we conduct extensive experiments on four real-world 
traffic datasets to validate the effectiveness of HUTFormer for long-term 
traffic forecasting. First, we introduce the experimental settings, 
including datasets, baselines, and implementation details. Then, we 
compare HUTFormer with other state-of-the-art traffic forecasting 
baselines and long-sequence time series forecasting baselines. Further
more, we conduct more experiments to evaluate the impact of important 
components and strategies, including the effectiveness of the hierar
chical U-Net structure, the input embedding strategy, and the two-stage 
training strategy.

5.1. Experimental setting

Datasets. We conduct experiments on four commonly used traffic 
datasets, including two traffic speed datasets (METR-LA and PEMS-BAY) 
and two traffic flow datasets (PEMS04 and PEMS08). The statistical 
information is summarized in Table 1. 

• METR-LA is a traffic speed dataset collected from loop-detectors 
located on the LA County road network (Jagadish et al., 2014). It 
contains data of 207 selected sensors over a period of 4 months from 
Mar to Jun in 2012 (Li et al., 2018). The traffic information is 

recorded at the rate of every 5 min, and the total number of time 
slices is 34,272.

• PEMS-BAY is a traffic speed dataset collected from California 
Transportation Agencies (CalTrans) Performance Measurement Sys
tem (PeMS) (Chen et al., 2001). It contains data of 325 sensors in the 
Bay Area over a period of 6 months from Jan 1st, 2017 to May 31st, 
2017 (Li et al., 2018). The traffic information is recorded at the rate 
of every 5 min, and the total number of time slices is 52,116.

• PEMS04 is a traffic flow dataset also collected from CalTrans PeMS. It 
contains data of 307 sensors over a period of 2 months from Jan 1st, 
2018 to Feb 28th, 2018 (Guo et al., 2019). The traffic information is 
recorded at the rate of every 5 min, and the total number of time 
slices is 16,992.

• PEMS08 is a public traffic flow dataset collected from CalTrans 
PeMS. Specifically, PEMS08 contains data of 170 sensors in San 
Bernardino over a period of 2 months from July 1st, 2018 to Aug 
31st, 2018 (Guo et al., 2019). The traffic information is recorded at 
the rate of every 5 min, and the total number of time slices is 17,856.

• ETTh1, ETTm1, and Weather are non-traffic time series datasets used 
to verify the generalization of the proposed HUTFormer. Due to 
space limitations, we omit their details. Interested readers can refer 
to (Zhou et al., 2021).

Spatial attributes—especially road-network topology—are indis
pensable to traffic forecasting tasks. The following describes in detail the 
spatial information used by each traffic dataset.3

• METR-LA and PEMS-BAY: These datasets comprise 207 and 325 
sensor nodes, respectively. Their geographic distributions are illus
trated in Fig. 5. Following prior work (Li et al., 2018), the spatial 
adjacency matrix A is computed with a thresholded Gaussian kernel 
(Shuman et al., 2013): 

Aij =

⎧
⎪⎨

⎪⎩

exp
(

−
dist(vi; vj)

2

σ2

)

; dist(vi; vj) ≤ κ

0; otherwise
(11) 

where dist(vi, vj) denotes the road-network distance between nodes vi 
and vj, σ is the standard deviation of all pairwise distances, and κ is 
the distance threshold.

• PEMS04 and PEMS08: These datasets contain 307 and 170 nodes, 
respectively. Because the original releases (Guo et al., 2019; Yu et al., 
2018) only contain the distance between sensors without the raw 
latitude–longitude coordinates, we omit their spatial visualizations. 
Consistent with the previous studies (Guo et al., 2019; Yu et al., 
2018), the spatial adjacency matrix A is defined as 

Aij =

{
1; dist

(
vi; vj

)
≤ 3:5 mile

0; otherwise (12) 

Baselines. On the one hand, we select six traffic forecasting baselines, 

Table 1 
Statistics of datasets.

Type Dataset # Sample # Sensor Sample rate

Speed METR-LA 34,272 207 5 min
PEMS-BAY 52,116 325 5 min

Flow PEMS04 16,992 307 5 min
PEMS08 17,856 170 5 min

3 ETTh1, ETTm1, and Weather are not traffic time-series datasets; they are 
non-spatiotemporal benchmarks used to evaluate the generalization capability 
of HUTFormer, and are therefore omitted here.
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including: 

• DCRNN (Li et al., 2018) is one of the earliest works for STGNN-based 
traffic forecasting, which replaces the fully connected layer in GRU 
(Cho et al., 2014) by diffusion convolutional layer to form a Diffusion 
Convolutional Gated Recurrent Unit.

• Graph WaveNet (Wu et al., 2019) is a traffic forecasting model, 
which stacks gated temporal convolutional layer and GCN layer by 
layer to jointly capture the spatial and temporal dependencies.

• MTGNN (Wu et al., 2020) is a traffic forecasting model, which ex
tends Graph WaveNet through the mix-hop propagation layer in the 
spatial module, the dilated inception layer in the temporal module, 
and a delicate graph learning layer.

• STID (Shao et al., 2022b) is a simple but effective baseline for traffic 
forecasting, which identifies the indistinguishability of samples in 
both spatial and temporal dimensions as a key bottleneck, and ad
dresses the indistinguishability by attaching spatial and temporal 
identities.

• STEP (Shao et al., 2022c) is a traffic forecasting model, which en
hances existing STGNNs with the help of a time series pre-training 
model. It significantly extends the length of historical data.

• D2STGNN (Shao et al., 2022d) is a state-of-the-art traffic forecasting 
model, which identifies the diffusion process and inherent process in 
traffic data, and further decouples them for better modeling.

On the other hand, we also select six long-sequence forecasting 
baselines, including: 

• HI (Cui et al., 2021) is a basic baseline for long-sequence time series 
forecasting problems, which directly takes the most recent time steps 
in the input as output.

• DLinear (Zeng et al., 2023) is a simple but effective long-sequence 
time series forecasting model, which decomposes the time series 
into a trend and a remainder series and employs two one-layer linear 
networks to model these two series.

• Informer (Zhou et al., 2021) is a model for long-sequence time series 
forecasting, which designs a ProbSparse self-attention mechanism 
and distilling operation to handle the challenges of the quadratic 
complexity in the standard Transformer. Also, it carefully designs a 
generative decoder to alleviate the limitation of standard 
encoder-decoder architecture.

• Autoformer (Wu et al., 2021) is a model for long-sequence time series 
forecasting, which is proposed as a decomposition architecture by 
embedding the series decomposition block as an inner operator. 
Besides, it designs an efficient Auto-Correlation mechanism to 
conduct dependencies discovery and information aggregation at the 
series level.

• FEDformer (Zhou et al., 2022) is a frequency-enhance Transformer 
for long-sequence time series forecasting. It proposes an attention 
mechanism with low-rank approximation in frequency and a mixture 
of experts decomposition to control the distribution shifting.

• Pyraformer (Liu et al., 2022) is a pyramidal attention-based model 
for long-sequence time series forecasting. Pyramidal attention can 
effectively describe short and long temporal dependencies.

• Crossformer (Zhang and Yan, 2023) is a Transformer-based model 
utilizing cross-dimension dependency for multivariate time-series 
(MTS) forecasting.

• PatchTST (Nie et al., 2023) proposes an effective design of 
Transformer-based models for time series forecasting tasks by 
introducing two key components: Patching and channel-independent 
structure.

Metrics. In this study, we evaluate the performances of all baselines 
by Mean Absolute Error (MAE) and Mean Absolute Percentage Error 
(MAPE) metrics. First, the MAE metric reflects the absolute prediction 
error, but is affected by the units of the dataset. For example, traffic 
speed datasets usually take values between 0 and 70 km/h, while traffic 
flow datasets usually take values between zero and hundreds. Thus, we 
also adopt MAPE, which can eliminate the impact of data units and re
flects the relative error, helping to understand the accuracy more 
intuitively.

Implementation. For all datasets, we use historical Tp = 288 time 
steps (i.e., 1 day) to predict future Tf = 288 time steps. For HUTFormer, 
we set the segment length L to 12, and the number of segments P = 24 (L 
× P = 288). We set the window size to 3. We set the hidden dimension of 
temporal embedding TTiD to 8, while others d to 32. The depth of 
HUTFormer is set to 4. For baselines, we adopt the default settings. 
Moreover, as discussed before, STGNNs can not directly handle the long- 
term traffic forecasting task due to their high complexity. Therefore, we 
first apply the segment embedding to reduce the length of input tokens 
for them.4 On the one hand, all baseline models are based on their 
official open-source code, with only modifications to the model input 
(introducing segment embedding technology), and we ensure that both 
HUTFormer and the baseline models use the same hyperparameters 
(segment size and stride size), thereby maintaining fairness in model 
structure. On the other hand, all models are trained using a unified and 
scalable pipeline (Shao et al., 2025c), ensuring fairness in the training 
process.

Optimization settings. For both encoding and decoding stages, we 
apply the optimization settings in Table 2. Specifically, we adopt Adam 
(Kingma and Ba, 2015) as our optimizer, and set learning rate and 
weight decay to 0.0005 and 0.0001, respectively. The batch size is set to 
64. In addition, we use a learning rate scheduler, MultiStepLR, which 
adjusts the learning rate at epochs 1, 40, 80, and 120 with gamma 0.5. 
Moreover, the gradient clip is set to 5. All the experiments in Section 5
are running on an Intel(R) Xeon(R) Gold 5217 CPU @ 3.00 GHz, 128G 
RAM computing server, equipped with RTX 3090 graphics cards.

Fig. 5. Spatial typologies of METR-LA and PEMS-BAY datasets.

4 Methods implemented with segment embeddings are marked with *.
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5.2. Main results

Settings. We follow the dataset division in previous works. Specif
ically, for traffic speed datasets (METR-LA and PEMS-BAY), we use 70%, 
10%, and 20% of the data for training, validating, and testing, respec
tively. For traffic flow datasets (PEMS04 and PEMS08), we use 60%, 
20%, and 20% of data for training, validating, and testing, respectively. 
We compare the performance at 1, 4, 8, 12, 16, and 24 h (horizon 12, 48, 
96, 144, 192, and 288) of forecasting on the MAE and MAPE metrics.

Results. The results of traffic speed and flow forecasting are shown 
in Tables 3 and 4, respectively. In general, HUTFormer consistently 
outperforms all baselines, indicating its effectiveness. Notably, Cross
former (Zhang and Yan, 2023) suffers from out-of-memory issues due to 
its high complexity and is therefore ignored in Tables 3 and 4.

Long-sequence forecasting models do not perform well on traffic 
forecasting tasks. We conjecture that the main reason is that these 
models do not fit the characteristics of traffic data. First, there exist 
strong correlations between the time series of traffic data. For example, 
due to the constraint of road networks, time series from adjacent sensors 
or from similar geographical functional areas may be more similar (Pan 
et al., 2019). Understanding and exploiting the correlations between 
time series is essential for traffic forecasting. However, long-sequence 

forecasting models are usually not concerned with such spatial de
pendencies. Second, as discussed in Section 1, the long-term traffic 
forecasting task requires exploiting multi-scale representations to cap
ture the complex dynamics of traffic data. However, most long-term 
sequence forecasting models mainly focus on capturing global de
pendencies based on self-attention mechanisms. For example, Informer 
(Zhou et al., 2021) optimizes the efficiency of the original self-attention 
mechanism through the ProbSparse mechanism. Autoformer (Wu et al., 
2021) conducts the dependencies discovery at the series level. They can 
not generate and utilize multi-scale representations of traffic data. In 
summary, the above-mentioned uniqueness of long-term traffic fore
casting tasks significantly affects the effectiveness of long-sequence 
forecasting models.

Compared to long-sequence forecasting models, traffic forecasting 
models achieve better performance. This is mainly because they model 
correlations between time series with the help of graph convolution. 
Most of them (Li et al., 2018; Shao et al., 2022c, 2022d; Wu et al., 2019, 
2020) utilize diffusion convolution, a variant of graph convolution, to 
model the diffusion process at each time step. However, there is no free 
lunch. The graph convolution brings a high complexity (Shao et al., 
2022c). As mentioned earlier, we had to implement these models with 
the segment embedding in HUTFormer to reduce the length of input 
tokens to make them runnable. Kindly note that although the latest 
baseline STEP (Shao et al., 2022c) can handle long-term historical data, 
it still requires a downstream STGNN as the backend, which can only 
make short-term future predictions. In summary, these models only 
focus on short-term traffic forecasting and do not consider the unique
ness of long-term traffic forecasting, i.e., exploiting multi-scale 
representations.

Compared to all baselines, HUTFormer achieves state-of-the-art 
performances by sufficiently addressing the issues of long-term traffic 
forecasting tasks. Specifically, on the one hand, HUTFormer efficiently 
handles the correlations between long-term time series with spatial- 
temporal positional encoding and segment embedding. On the other 

Table 3 
Long-term traffic forecasting on traffic speed datasets METR-LA and PEMS-BAY.

Data Method @Horizon 12 @Horizon 48 @Horizon 96 @Horizon 144 @Horizon 192 @Horizon 288

MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE(%)

METR-LA HI 10.44 23.21 10.42 23.19 10.43 23.23 10.43 23.32 10.40 23.34 10.22 22.81
DLinear 7.61 16.19 12.86 23.79 12.99 23.11 12.90 23.48 12.89 23.15 13.07 23.33
Informer 4.65 15.52 4.86 16.54 4.98 17.16 5.07 17.41 5.07 17.30 5.06 17.14
Autoformer 7.23 19.25 7.27 19.73 7.45 20.23 7.83 21.49 7.74 20.98 8.41 22.43
FEDformer 8.78 22.29 9.11 22.69 9.12 22.75 9.54 24.18 9.81 24.76 10.13 25.56
Pyraformer 4.22 12.84 4.55 14.93 4.75 15.81 4.80 15.89 4.81 15.68 4.62 14.79
PatchTST 4.43 13.58 5.02 16.37 5.14 16.64 5.19 16.98 5.21 16.67 5.25 17.16

DCRNN* 4.07 12.74 4.39 14.08 4.44 14.02 4.46 14.16 4.51 14.41 4.71 15.59
GWNet* 3.87 12.18 4.19 13.60 4.25 13.62 4.42 14.56 4.58 15.40 4.51 15.09
MTGNN* 4.01 12.31 4.31 13.84 4.53 14.85 4.59 14.77 4.57 15.18 4.75 15.93
STID 3.84 12.17 4.13 14.11 4.04 13.05 4.11 13.65 4.15 14.07 4.17 13.83
STEP* 3.74 11.60 4.14 13.24 4.22 13.52 4.38 14.07 4.34 13.96 4.43 14.42
D2STGNN* 3.71 11.24 3.96 12.84 3.99 13.26 4.05 13.17 4.05 13.36 4.09 12.78

HUTFormer 3.59 10.93 3.77 11.88 3.79 11.86 3.80 12.08 3.82 12.18 3.84 12.28

PEMS-BAY HI 3.37 7.84 3.36 7.80 3.36 7.77 3.36 7.76 3.36 7.74 3.38 7.79
DLinear 2.70 6.28 3.14 7.75 3.13 7.77 3.15 7.76 3.15 7.78 3.23 7.90
Informer 2.77 6.65 2.80 6.88 2.84 7.06 2.83 7.07 2.82 6.98 2.92 7.16
Autoformer 3.15 7.48 3.24 7.85 3.30 8.00 3.37 8.10 3.39 8.15 4.35 11.25
FEDformer 3.04 7.55 3.14 7.61 3.13 7.58 3.32 8.00 3.42 8.45 3.67 9.33
Pyraformer 2.53 6.21 2.71 6.72 2.64 6.39 2.74 6.65 2.75 6.68 2.77 6.81
PatchTST 2.35 5.94 2.92 7.45 2.96 7.52 3.00 7.62 3.01 7.67 3.10 7.73

DCRNN* 2.18 5.49 2.52 6.49 2.54 6.43 2.66 6.79 2.67 6.80 2.66 6.62
GWNet* 2.01 5.11 2.35 5.91 2.40 5.98 2.47 6.35 2.46 6.24 2.46 6.09
MTGNN* 2.17 5.40 2.45 6.11 2.51 6.04 2.52 6.13 2.57 6.19 2.70 6.40
STID 2.02 5.02 2.29 5.66 2.32 5.69 2.33 5.72 2.32 5.67 2.38 5.81
STEP* 2.00 4.94 2.33 5.93 2.38 6.05 2.44 6.26 2.45 6.24 2.54 6.41
D2STGNN* 2.04 4.97 2.26 5.44 2.29 5.60 2.34 5.55 2.31 5.50 2.38 5.64

HUTFormer 1.93 4.62 2.18 5.16 2.21 5.24 2.22 5.24 2.23 5.25 2.28 5.35

Table 2 
Optimization settings.

Config Value

Optimizer Adam
Learning rate 0.0005
Batch size 64
Weight decay 0.0001
Learning rate schedule MultiStepLR
Milestones [1, 40, 80, 120]
Gamma 0.5
Gradient clip 5
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hand, HUTFormer effectively generates and utilizes multi-scale repre
sentations based on the hierarchical U-Net.

5.3. Efficiency

In this section, we conduct more experiments to evaluate the effi
ciency of the HUTFormer variants in Section 5.5. We conduct experi
ments with a single NVIDIA V100 graphics card with 32 GB memory, 
and report the GPU memory usage and running time. Specifically, for the 
two-stage training variants, we report the largest GPU memory usage of 
the two stages and report the sum of the running time in the encoding 
and decoding stages. We conduct experiments on the METR-LA dataset.

The results are shown in Fig. 6. First, we can see that removing the 
segment embedding (i.e., w/o SE) will significantly increase the 
computational complexity, and require more GPU memory. Second, 
compared with applying GCN, HUTFormer is more efficient and effec
tive by leveraging the spatial-temporal positional encoding, which does 
not increase much complexity.

5.4. Generalization

The ability of HUTFormer to generate and utilize multi-scale features 
should also be effective in many non-traffic data, since the multi-scale 
features widely exists in many domains. In order to verify the general
ization of HUTFormer, in this part, we compare HUTFormer with more 
latest Transformer-based long time series forecasting models [10, 74] 
based on three commonly used long-sequence prediction datasets, 
ETTh1, ETTm1, and Weather. The details of Crossformer (Zhang and 
Yan, 2023) and Triformer (Cirstea et al., 2022) as well as the three 
datasets are neglected for simplicity. Interest readers can refer to their 
papers [10, 74]. We use the same setting as the other datasets in our 
paper. As shown in Table 5, HUTFormer still outperforms these models 
on these datasets, which further verifies the effectiveness and general
ization of HUTFormer.

5.5. Ablation study

In this subsection, we conduct more experiments to evaluate the 
impact of some important components and strategies. Specifically, we 
evaluate from three aspects, including the effectiveness of the hierar
chical U-Net structure, the input embedding strategy, and the two-stage 
training strategy. Due to space limitations, we only present the results on 
METR-LA datasets in Table 6.

The hierarchical U-Net structure is designed to generate and exploit 
multi-scale features. Specifically, the encoder combines window self- 
attention and segment merging to generate multi-scale features, while 
the decoder primarily utilizes extracted features based on cross-scale 
attention. Therefore, to evaluate their effectiveness, we set up three 
variants. First, we replace the decoder with a simple concatenation, 
named HUTFormer concat. The concatenation of features from different 
scales naturally preserves all information. Second, we set HUTFormer 
w/o decoder to remove the decoder and use the intermediate prediction 
as the final prediction. The above two variants are used to demonstrate 

Table 4 
Long-term traffic forecasting on traffic flow datasets PEMS04 and PEMS08.

Data Method @Horizon 12 @Horizon 48 @Horizon 96 @Horizon 144 @Horizon 192 @Horizon 288

MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE(%)

PEMS04 HI 41.73 28.46 41.16 28.61 41.38 28.62 41.28 28.42 30.99 27.34 39.58 26.49
DLinear 27.29 19.83 37.20 26.51 37.50 26.78 37.57 26.87 37.17 25.27 36.87 25.21
Informer 25.94 17.56 25.72 18.05 25.60 18.27 25.98 17.81 26.42 17.67 27.42 18.57
Autoformer 29.94 28.00 31.30 27.41 31.47 27.73 31.95 27.89 32.03 28.03 33.34 29.82
FEDformer 34.94 34.33 32.24 37.23 33.90 34.33 35.12 41.26 35.16 34.08 41.83 51.01
Pyraformer 23.40 17.18 25.40 18.80 26.45 19.89 26.22 19.01 26.51 19.18 26.58 20.57
PatchTST 22.75 16.67 29.37 21.85 30.63 23.15 32.01 24.00 30.54 21.54 31.50 24.00

DCRNN* 22.25 16.59 24.42 18.89 25.20 19.17 26.31 19.61 27.32 19.74 28.04 21.02
GWNet* 22.24 16.51 23.50 18.29 24.08 18.07 24.85 18.21 25.83 18.98 31.17 21.00
MTGNN* 21.75 15.93 23.04 17.81 24.33 17.80 25.56 17.68 25.80 17.85 26.78 20.64
STID 21.01 15.24 22.77 16.61 23.39 16.87 24.06 17.08 24.43 17.22 25.19 17.49
STEP* 20.82 15.56 22.23 17.11 22.87 17.21 24.46 17.97 24.89 17.40 26.18 18.47
D2STGNN* 21.55 16.03 22.98 17.04 24.16 17.57 24.50 17.93 24.59 17.19 24.79 17.97

HUTFormer 19.61 13.59 21.54 14.95 21.96 15.22 22.66 15.30 23.10 15.35 23.43 15.71

PEMS08 HI 37.33 25.01 37.31 25.07 37.23 25.05 37.09 25.02 36.94 24.98 36.40 24.76
DLinear 22.91 17.23 34.13 24.15 34.34 25.54 34.44 23.80 34.52 23.91 35.11 23.71
Informer 24.55 14.76 24.80 15.03 24.72 15.03 25.07 15.11 24.82 14.91 25.09 15.61
Autoformer 31.36 25.44 32.29 27.13 33.19 27.45 32.98 26.15 33.57 25.78 36.75 28.82
FEDformer 24.62 20.01 26.76 21.85 28.56 23.02 30.33 24.47 29.11 23.14 29.91 24.47
Pyraformer 21.92 14.43 23.00 14.70 23.80 15.46 24.45 16.88 24.34 16.17 22.71 14.79
PatchTST 16.94 11.37 21.27 15.10 22.56 16.39 23.22 17.40 23.18 17.70 23.73 17.35

DCRNN* 18.64 13.47 20.42 14.92 20.97 15.11 21.63 15.51 22.45 16.23 22.95 16.72
GWNet* 17.07 11.57 19.55 11.93 20.38 14.33 20.49 14.82 20.00 14.68 20.29 15.20
MTGNN* 17.75 12.61 19.27 13.35 19.99 13.85 20.68 15.00 20.95 14.65 22.16 15.68
STID 16.40 11.42 18.53 13.26 19.17 13.66 19.59 13.78 19.59 14.03 20.23 15.35
STEP* 16.67 11.34 19.05 14.00 19.74 14.74 20.15 14.88 19.80 14.84 20.37 15.54
D2STGNN* 17.27 11.47 18.45 12.35 18.97 12.63 19.33 12.81 19.09 12.34 19.55 12.93

HUTFormer 15.18 10.09 16.72 11.26 17.23 11.55 17.59 11.74 17.83 11.84 18.44 12.20

Fig. 6. Efficiency study.
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that exploiting multi-scale features is a non-trivial challenge and our 
hierarchical decoder is effective. Third, we set HUTFormer w/o hierar
chy to further remove segment merging and replace the window 
Transformer layer with a standard Transformer layer, to evaluate the 
effectiveness of hierarchical multi-scale representations. As shown in 
Table 6, HUTFormer significantly outperforms HUTFormer concat and 
HUTFormer w/o decoder, which shows that it is not an easy task to 
utilize the multi-scale features, and validates the effectiveness of our 
decoder. In addition, HUTFormer w/o hierarchy shows that hierarchical 
multi-scale features are crucial for accurate long-term traffic forecasting. 
The above results show that generating and utilizing hierarchical multi- 
scale features is important, and the designed hierarchical U-Net struc
ture is effective.

The input embedding strategy aims to address the complexity issue 
from both spatial and temporal dimensions. Specifically, it consists of a 
Segment Embedding (SE) and a Spatial-Temporal Positional Encoding 
(ST-PE). To verify their effectiveness, we set up three variants. First, we 
set HUTFormer w/o ST-PE, which replaces the ST-PE with standard 
learnable positional encoding. Second, we set HUTFormer GCN, which 
replaces the spatial embeddings in ST-PE with graph convolution (Wu 
et al., 2019). Third, we remove the segment embedding to get HUT
Former w/o SE. As shown in Table 6, without ST-PE, the performance of 

HUTFormer decreases significantly. This is because modeling the cor
relations between time series is the basis of traffic forecasting. In addi
tion, we can see that the ST-PE strategy is significantly better than 
performing graph convolution, indicating the superiority of ST-PE. 
Moreover, removing segment embedding not only leads to a signifi
cant decrease in performance but also increases the complexity due to 
the increased sequence length. These results indicate the effectiveness of 
the spatial-temporal positional encoding and segment merging.

Finally, we evaluate the two-stage training strategy of HUTFormer. 
To this end, we set two variants. First, we set HUTFormer end2end, 
which trains the HUTFormer in an end-to-end strategy. Second, we set 
HUTFormer w/o fix, which does not fix the parameter of the encoder 
when training the decoder. The results in Table 6 show that either the 
end-to-end strategy or the strategy without fixing the encoder leads to 
insufficient optimization and significant performance degradation. In 
addition, both strategies require more memory. In contrast, our two- 
stage strategy achieves the best performance and efficiency 
simultaneously.

5.6. Hyper-parameter and convergence study

In this subsection, we first conduct experiments to study the impact 

Table 5 
Experiments on ETTh1, ETTm1, and Weather datasets.

Data Method @Horizon 12 @Horizon 48 @Horizon 96 @Horizon 144 @Horizon 192 @Horizon 288

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 Informer 0.62 0.82 0.69 0.91 0.82 1.10 0.90 1.25 0.96 1.43 0.85 1.17
Autoformer 0.45 0.44 0.47 0.47 0.48 0.50 0.48 0.52 0.50 0.53 0.51 0.53
FEDformer 0.42 0.37 0.43 0.40 0.44 0.43 0.46 0.46 0.46 0.47 0.52 0.57
Pyraformer 0.56 0.63 0.57 0.64 0.65 0.79 0.74 0.92 0.76 1.03 0.79 1.09
Triformer 0.44 0.44 0.46 0.48 0.48 0.52 0.49 0.55 0.50 0.55 0.51 0.56
Crossformer 0.39 0.35 0.40 0.38 0.44 0.44 0.45 0.46 0.45 0.47 0.48 0.49
PatchTST 0.37 0.32 0.38 0.35 0.42 0.42 0.43 0.46 0.45 0.47 0.48 0.49

HUTFormer 0.36 0.31 0.38 0.35 0.41 0.41 0.43 0.44 0.45 0.47 0.47 0.47

ETTm1 Informer 0.53 0.59 0.60 0.67 0.63 0.74 0.68 0.85 0.72 0.91 0.74 0.95
Autoformer 0.49 0.53 0.53 0.61 0.53 0.62 0.54 0.63 0.54 0.63 0.62 0.76
FEDformer 0.37 0.29 0.41 0.37 0.43 0.40 0.44 0.42 0.43 0.42 0.46 0.47
Pyraformer 0.52 0.53 0.64 0.80 0.62 0.71 0.71 0.89 0.59 0.65 0.71 0.88
Triformer 0.34 0.26 0.39 0.34 0.39 0.35 0.41 0.39 0.41 0.38 0.43 0.42
Crossformer 0.32 0.23 0.41 0.37 0.42 0.37 0.51 0.51 0.53 0.52 0.58 0.61
PatchTST 0.29 0.21 0.35 0.32 0.36 0.34 0.38 0.38 0.38 0.38 0.40 0.41

HUTFormer 0.28 0.20 0.35 0.31 0.35 0.31 0.38 0.36 0.36 0.35 0.38 0.39

Weather Informer 0.34 0.27 0.38 0.36 0.40 0.38 0.43 0.42 0.45 0.46 0.45 0.48
Autoformer 0.36 0.29 0.38 0.33 0.39 0.35 0.41 0.39 0.42 0.41 0.44 0.44
FEDformer 0.32 0.24 0.34 0.27 0.35 0.30 0.36 0.32 0.38 0.35 0.47 0.48
Pyraformer 0.28 0.23 0.42 0.45 0.36 0.34 0.38 0.38 0.50 0.59 0.42 0.44
Triformer 0.15 0.12 0.23 0.20 0.26 0.22 0.28 0.24 0.32 0.29 0.34 0.33
Crossformer 0.14 0.11 0.22 0.19 0.25 0.21 0.27 0.23 0.31 0.27 0.32 0.31
PatchTST 0.14 0.11 0.22 0.18 0.25 0.21 0.27 0.23 0.31 0.28 0.33 0.32

HUTFormer 0.12 0.10 0.20 0.16 0.24 0.20 0.26 0.23 0.29 0.27 0.31 0.30

Table 6 
Ablation study on the METR-LA dataset.

Variant @Horizon 12 @Horizon 48 @Horizon 96 @Horizon 144 @Horizon 192 @Horizon 288

MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE(%)

HUTFormer 3.59 10.93 3.77 11.88 3.79 11.86 3.80 12.08 3.82 12.18 3.84 12.28
concat 3.86 12.16 3.98 13.23 4.01 13.36 4.01 13.36 4.05 13.41 4.08 13.65
w/o decoder 3.80 11.94 3.85 12.33 3.90 12.64 3.88 12.91 3.96 12.91 3.97 12.93
w/o hierarchy 3.90 12.56 3.97 12.85 3.96 12.86 3.98 12.88 3.98 12.92 4.12 13.48

w/o ST-PE 4.11 12.68 4.78 15.80 4.90 16.44 5.00 16.81 5.13 17.47 5.25 17.56
GCN 3.79 11.87 4.23 14.14 4.28 14.32 4.30 14.21 4.32 14.28 4.35 14.40
w/o SE 3.76 11.83 3.86 12.39 3.85 12.35 3.91 12.73 3.92 12.75 4.03 13.12

end2end 3.72 11.60 3.95 12.59 3.97 12.83 3.95 12.58 3.95 12.58 4.00 12.73
w/o fix 3.64 11.28 3.85 12.11 3.88 12.49 3.90 12.40 3.93 12.57 3.91 12.57
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of two key hyper-parameters: segment size and window size. We 
conduct experiments on the METR-LA dataset and report the MAE at 
horizon 288. Moreover, we report the training speed of the encoder, 
since these hyper-parameters mainly affect the encoder. As shown in 
Fig. 7a, the segment size L = 12 achieves the best performance. Smaller 
segments cannot provide robust semantics, while larger segments ignore 
more local details. In addition, we can see that as the segment size in
creases, the encoder runs faster (s/epoch). Kindly note that changing the 
segment size may change the depth of the HUTFormer to ensure that the 
receptive field covers the entire sequence. The impact of the window 
size is shown in Fig. 7b, where larger window sizes perform worse. This 
is because the ability to extract multi-scale features is weakened as the 
window size increases. Moreover, the efficiency of HUTFormer will also 
decrease (Liu et al., 2021b) on larger window sizes.

Additionally, we conduct a convergence analysis experiment. Fig. 7c 
illustrates the validation set loss during the two-phase process, showing 
the convergence behavior of the encoding and decoding stages. Com
bined with Table 6 and Fig. 9, it can be observed that the predictions 
during the encoding phase already achieve good accuracy. The decoding 
phase, by introducing multi-scale information, further improves the 
prediction results, especially in the details (particularly in periods of 
traffic congestion), leading to a further reduction in loss.

5.7. Visualization

5.7.1. Spatial-temporal positional encoding
To further understand the HUTFormer in modeling the correlations 

between multiple time series in traffic data, we analyze the spatial- 
temporal positional encoding layer. Modeling correlations between 
multiple time series have been widely discussed in multivariate time 
series forecasting (Shao et al., 2022c; Wu et al., 2019, 2020). Previous 
works usually utilize Graph Convolution Networks (GCN), which 
conduct message passing in a pre-defined graph. GCN is a powerful 
model, but it has high complexity of O(N2). Very recent works, STID 
(Shao et al., 2022b) and ST-Norm (Deng et al., 2021), identify that graph 
convolution in multivariate time series forecasting is essentially used for 
addressing the indistinguishability of samples on the spatial dimension. 
Based on such an observation, STID proposes a simple but effective 
baseline of attaching spatial and temporal identities, achieving a similar 
performance of GCN but high efficiency. The Spatial-Temporal Posi
tional Encoding (ST-PE) is designed based on such an idea (Shao et al., 
2022b).

The ST-PE contains three learnable positional embeddings, 
E ∈ ℝN×d, TTiD ∈ ℝND×d, and TDiW ∈ ℝNW×d, where N is the number of 
time series, ND is the number of time slots of a day (determined by the 
sensor's sampling frequency), and NW = 7 is the number of days in a 
week. We utilize t-SNE (van der Maaten and Hinton, 2008) to visualize 
these three embedding matrices. Kindly note that TDiW only have 7 

embeddings, which is significantly less than the hidden dimension 32, 
making it hard to get correct visualizations. Therefore, we additionally 
train a HUTFormer with the embedding size of TDiW to 2 to get a more 
accurate visualization.

The results are shown in Fig. 8. First, as shown in Fig. 8a, the spatial 
embeddings are likely to cluster. For example, traffic conditions 
observed by sensors that are connected or have similar geographical 
functionality are more likely to be similar. However, it is not as apparent 
as in the results in STID (Shao et al., 2022b). We conjecture this is 
because the impact of the indistinguishability of the samples becomes 
weaker as the length of the historical data increases. Second, Fig. 8b 
shows the embeddings of 288 time slots, where the daily periodicity is 
very obvious. Third, Fig. 8c visualizes the embeddings of each day in a 
week, where weekdays are closer and weekends’ are different.

5.7.2. Prediction visualization
In order to further intuitively evaluate HUTFormer, in this subsec

tion, we visualize the prediction of HUTFormer and other baselines on 
the METR-LA dataset. Specifically, we select sensor 12 and displayed its 
data from June 05th, 2012 to June 06th, 2012 (located in the test 
dataset).

Fig. 9 shows two consecutive days from the METR-LA dataset: The 
first day is used as historical input, while the second day is the prediction 
target. This design serves two purposes. First, the strong similarity be
tween the two days illustrates the dataset's pronounced periodicity. 
Second, the series captures sharp, localized fluctuations during the 
morning and evening rush hours, revealing the onset and dissipation of 
traffic congestion.

Capturing global patterns is essential for modeling overall cyclical 
trends, whereas capturing local patterns is crucial for accurately fore
casting fine-grained changes such as rapid, short-term spikes. As dis
cussed previously, models like Autoformer (Wu et al., 2021), Graph 
WaveNet (Wu et al., 2019), and HUTFormer w/o hierarchy focus pri
marily on global dynamics and largely overlook local feature extraction. 
Consequently, although they reproduce broad periodic behavior 
reasonably well, their accuracy falls during intervals of rapid change
—specifically, the congestion periods marked by the red background in 
the figure. By contrast, HUTFormer effectively models multi-scale fea
tures and thus maintains high accuracy even in these volatile segments. 
This result underscores the importance of integrating features at mul
tiple scales when modeling complex, periodic traffic data.

5.8. Limitations

Although HUTFormer demonstrates strong performance, it still has 
several issues that need to be addressed in future work. First, the most 
significant issue with HUTFormer is its lack of generalization to new 
sensors. Graph-based spatial dependency modeling methods (Kipf and 

Fig. 7. Hyper-parameter and converagence study.
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Welling, 2017; Li et al., 2018; Wu et al., 2019) are inherently inductive 
(Hamilton et al., 2017), meaning they can make predictions on graphs 
with changing nodes and relationships. However, HUTFormer relies on 
spatial positional encoding to capture spatial dependencies. For newly 
introduced nodes, the positional encoding requires training, which 
means HUTFormer cannot naturally perform inductive reasoning. Sec
ond, the training of HUTFormer is more complex than that of end-to-end 
methods. Although the two-phase training strategy is effective, it 
objectively makes the model's training process less convenient 
compared to end-to-end models. Therefore, exploring methods for 
end-to-end generation and utilization of multi-scale information is a 
promising avenue for future research. In addition, the reliability of 
longer-term forecasting is crucial. The longer the forecast period, the 
greater the uncertainty. Only by systematically quantifying these un
certainties and incorporating known external events into the model can 
more accurate and practically valuable results be achieved.

6. Conclusions

In this study, we make the first attempt to explore the long-term 
traffic forecasting problem. To this end, we reveal its unique chal
lenges in exploiting the multi-scale representations of traffic data, and 
propose a novel Hierarchical U-Net TransFormer (HUTFormer) to effi
ciently and effectively address them. The HUTFormer mainly consists of 
a hierarchical encoder and decoder. On the one hand, the hierarchical 
encoder generates multi-scale representations based on the window self- 
attention mechanism and segment merging. On the other hand, the hi
erarchical decoder effectively utilizes the extracted multi-scale features 
based on the cross-scale attention mechanism. In addition, HUTFormer 

adopts segment embedding and spatial-temporal positional encoding as 
the input embedding strategy to address the complexity issue. Extensive 
experiments on four commonly used traffic datasets show that the pro
posed HUTFormer significantly outperforms state-of-the-art traffic 
forecasting and long-sequence time series forecasting baselines.

Replication and data sharing

The source code is available at https://drive.google.com/file/d 
/1GA_wFv71P3mk2OVpM-PPlNYBmX7f4Y4d/view. Follow the 
detailed instructions in the README. md (included later in the docu
ment) to set up the environment and data, and you will be able to train 
HUTFormer with ease.
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